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Abstract

In modern polymer pipe extrusion processes with connected post-processing steps, the intermediate cooling and condi-
tioning process is essential for the resulting product quality. In such cases, computationally efficient models are required
for real-time process control and optimization. Unfortunately, heat transfer coefficients are rarely known for actual
production processes, leading to an inverse heat transfer problem. Existing methods mainly rely on computationally
intensive numerical models or on data intensive neural networks. Both are not suitable, if only sparse measurements are
available and a fast execution time is required. In contrast to that, we propose to use a proper orthogonal decomposition
and project the governing heat equation onto extracted basis functions via the Galerkin method. This leads to an effi-
cient and accurate reduced order model, which can be used for parameter identification and subsequent process control.
Regarding the identification, we address the ill-posed problem with well-known relative constraints, l2 regularization
and decomposition of coefficients based on the Nusselt number. Simulation and experimental results show that the
heat transfer coefficients are consistently identified and robust against initial parameter guesses despite sparse and noisy
temperature measurements. Consequently, the proposed method can be efficiently applied in cooling and conditioning
processes in polymer extrusion and related applications such as identifying the heat transfer coefficients and thermal
resistance in pressurized surge lines of nuclear power plants and brick walls in melting furnaces respectively.

Keywords: reduced order model, proper orthogonal decomposition, inverse heat transfer problem, pipe extrusion,
nonlinear parameter identification, constrained identification

1. Introduction

Modern polymer extrusion processes are often equipped
with directly connected post-processing steps, for instance
pipe drawing to improve its mechanical properties through
oriented polymer chains [1, 2]. In such cases, the inter-
mediate cooling and conditioning steps are essential for
achieving high product quality, whereas efficient and accu-
rate models are required for real-time process control and
optimization. These models need to cope with nonlinear
process behavior, multiple connected process steps with
long transport delays [3] and the governing heat equation
to extrapolate beyond simple stationary operating points.

However, boundary conditions and their heat transfer
coefficients for each cooling and conditioning process step
are usually unknown for actual production lines, leading
to an inverse heat transfer problem (IHTP), which is in-
herently difficult to solve due to its ill-posed nature. To
address this problem, several research directions arose and
were further developed in recent years [4].

Neural networks are used as surrogate models of the
system to solve different variations of the IHTP, where
the main advantage is their fast inference allowing it to
be applied in real-time applications. Billah et al. [5]
used physics-informed neural networks (PINN) to solve the

IHTP for 1D domains, where unknown properties are de-
fined as trainable parameters and simultaneously identified
during the training process. In this regard, the governing
equations are built into the PINN as regularization to im-
prove its extrapolation capabilities. Similarly, Cai et al.
[6] developed a PINN to estimate the temperature and ve-
locity field in a 2D convective domain. As before, unknown
properties were identified during the training process. An-
other approach to use neural networks in IHTPs was in-
troduced by Gu et al. [7], where a generative adversarial
network (GAN) was trained to inversely identify transient
heat fluxes in pool boiling processes. Even though the un-
derlying governing equations were not built into the neural
network directly, the model showed good results and fast
execution times.

In spite of requiring only a few measurement points in
the spatial domain, aforementioned methods require con-
tinuous temperature measurements in time. Therefore,
these methods are hardly suitable for actual cooling and
conditioning process steps, where sparse sensor locations
and a Lagrangian view of the process, meaning a cross sec-
tion of the moving pipe is followed through the line, lead
to sparse measurements in the time domain.

In contrast to neural networks, conventional methods
employ a parameterized forward model, for instance based
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on finite element (FE), finite difference (FD) or finite vol-
ume (FV), and an optimization algorithm to identify un-
known parameters or boundary conditions of the model
[4]. Duda [8] proposed a general method based on an
FE direct model and the Levenberg-Marquardt optimiza-
tion algorithm to identify boundary heat fluxes in heating
processes based on simulated temperature measurements.
Similarly, Reddy et al. [9] generally reviewed benefits and
drawbacks of FE models for inverse problems and found
that direct models based on FE are well suited for IHTP
due to their flexibility. As a result, the combined method
of a numerical direct model and an optimization algorithm
to solve IHTPs is widely applied in several domains.

Lu et al. [10] applied the conjugate gradient method
based on an FE model of pressurized surge lines in a nu-
clear power plant to identify the convective heat trans-
fer coefficient as well as fluid and inner wall temperatures
solely based on temperature measurements on the outside.
Bozzoli et al. [11] employed a numerical model of a coiled
tube to estimate the local convective wall heat flux using
experimental data. The ill-posed problem was addressed
by Tikhonov regularization and fixed-point iteration to se-
lect suitable regularization weights. Palumbo et al. [12] fo-
cused on identifying the interfacial heat transfer coefficient
in sand mold casting processes. For that purpose, a genetic
algorithm was used to fit the direct FD model on exper-
imental temperature measurements. Similarly, Udayraj
[13] analyzed the effectiveness of three metaheuristic al-
gorithms – ant colony optimization (ACO), cuckoo search
and particle swarm optimization – in different settings,
and found that the ACO is most effective to reconstruct
the heat flux based on temperature measurements. Noh
et al. [14] utilized a thermal resistance network as direct
model in combination with a Kalman filter and a recursive
least-squares algorithm to determine the heat flux in gun
barrels based on experimental temperature measurements
on the outer surface. Moreover, Hafid and Lacroix [15]
utilized an FV model to identify the heat flux and ther-
mal resistance of the brick wall in a melting furnace. To
improve the computational efficiency of the identification
process the Levenberg-Marquardt algorithm was extended
with the Broyden-method. Additionally, the influence of
measurement noise was investigated. Gostimirovic et al.
[16] employed an FE model with the conjugate gradient
method to identify the heat flux in grinding processes,
which is used to optimize the process parameters.

As shown by the literature, numerical methods are of-
ten used as direct model while an optimization algorithm
fits the parameters of the model to simulated or exper-
imentally measured data. However, the resulting direct
models are computationally intensive and hardly suitable
for real-time application in process control and optimiza-
tion. Additionally, most identification procedures require
continuous temperature measurements in time, which is
difficult to accomplish in cooling and conditioning pro-
cesses with moving goods, multiple process steps and an
Lagrangian view on the system.

Even though numerical models can be systematically
optimized to reduce the degrees of freedom [17] and conse-
quently, improve computational efficiency, their applicabil-
ity is still limited where fast execution times are required.
In such cases, reduced order models (ROM), based on the
Galerkin method and optimal basis functions extracted via
proper orthogonal decomposition (POD), can reduce the
degrees of freedom (DOF) and computational effort by sev-
eral orders of magnitude.

Star et al. [18] applied the POD-Galerkin method for
a turbulent convective buoyant flow, where the data used
for extracting the POD modes were generated by an FV
model with varying parameters to cover an appropriate
range. After extracting POD modes for velocity, pressure
and temperature and projecting the governing equation,
it was found that the execution time for simulation runs
can be reduced by a factor of 105 while maintaining ac-
ceptable accuracy. Additionally, in spite of its linear char-
acteristic, the ROM covers the nonlinearity of the system
to a high degree. Similarly, Escanciano and Class [19] ap-
plied the POD-Galerkin method to develop a ROM of a
deep water pool for storing nuclear material. The snap-
shots for computing the POD modes were generated by
a computational fluid dynamics (CFD) model. Since the
ROM requires only a fraction of the computational efforts,
parameter spaces can be efficiently explored to determine
safe operating conditions. Additionally, since simulating
the heat transfer processes in CPUs requires lightweight
models with few DOF, Jiang et al. [20] developed a ROM
based on the POD-Galerkin method, where the input data
for extracting the modes were generated by an FE model.
Importantly, the parameters of the high-fidelity simula-
tion were chosen to cover a physically feasible range to
ensure that the ROM is capable of representing a wide
range of scenarios. Identical to aforementioned research,
the computational efforts were reduced by several orders
of magnitude.

As a result, due to its significant computational ad-
vantage in comparison to high-fidelity full order models,
ROMs based on Galerkin-POD are also well suited for
IHTP. Park et al. [21] used a high-fidelity FD model
with varying parameters to extract meaningful modes. Af-
ter projecting the heat equation, the ROM was used as
forward model to identify transient heat sources in a 2D
solid body with temperature dependent heat conductivity
through the conjugate gradient method. As a result, the
computation time was significantly reduced while main-
taining high accuracy in comparison to the high-fidelity
FD model. Moreover, Pham et al. [22] applied the POD-
Galerkin method to a 1D IHTP of a solid wall to identify
the unknown thermal diffusivity. In contrast to the afore-
mentioned source, the Levenberg-Marquardt optimization
algorithm was applied to fit the forward model to simu-
lated temperature measurements. Interestingly, only one
virtual sensor was sufficient to accurately identify the ther-
mal diffusivity in spite of added random noise.

As shown, reduced order models were successfully ap-
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Figure 1: Pipe extrusion process with directly connected drawing process and intermediate cooling and conditioning steps (top view), where
manual and automated temperature measurements are indicated by x̃k and xk respectively.

plied to model heat and mass transfer processes for both,
pure simulation purposes and as forward model for IHTP.
However, to the best of our knowledge, neither high-fidelity
models nor ROMs were employed in multi-step cooling and
conditioning processes where multiple heat transfer coeffi-
cients need to be identified simultaneously. Additionally,
all related work require continuously measured tempera-
ture in the time domain, which cannot be achieved when a
Lagrangian view of the system is considered. Therefore, we
propose to use a proper orthogonal decomposition based
on simulation data and project the governing heat equa-
tion on the extracted basis functions. This ROM is then
used to efficiently solve the IHTP and consistently iden-
tify the heat transfer coefficients while making use of well-
known relative constraints and l2 regularization to address
its ill-posed nature. Furthermore, to account for multiple
product dimensions, the optimization problem is formu-
lated in terms of Nusselt number and characteristic length,
which reduces the number of unknown parameters signifi-
cantly. As a consequence, the novelty of this work and the
main contributions can be summarized as follows:

• Develop a reduced order model of a multi-step cool-
ing and conditioning process to increase computa-
tional efficiency while maintaining accuracy.

• Formulate the optimization problem based on Nus-
selt number and characteristic length to reduce the
number of unknown parameters.

• Address the ill-posed nature through l2 regulariza-
tion and well-known relative constraints.

• Solve the IHTP for multi-step cooling and condition-
ing processes with multiple product dimensions in
spite of sparse temperature measurements in time.

• Validate the proposed method with simulated and
experimental data.

Importantly, the proposed methodology is generically
applicable for polymer extrusion and related problems,

such as identifying the heat transfer coefficients in pressur-
ized surge lines of nuclear power plants and the thermal
resistance of brick walls in melting furnaces.

This paper is structured as follows. Section 2 describes
the production process with its cooling and conditioning
steps as well as the governing heat equation. Section 3
elaborates on the proposed methodology based on proper
orthogonal decomposition, Galerkin method and parame-
ter identification with relative constraints and regulariza-
tion. Section 4 and 5 include the results based on simu-
lated and experimental data respectively. The results and
its limitations are discussed in section 6, whereas section
7 concludes this paper.

2. Problem Formulation

2.1. Process and Material Specification

Modern pipe production lines are often equipped with
directly connected post-processing steps. In the case of
bi-oriented PVC pipe production, the temperature profile
of the pipe is essential for the quality of the drawing pro-
cess. As shown in Fig. 1, a twin-screw extruder produces
a melt with consistent quality, which is formed by the die
head to a preform pipe. Several cooling and conditioning
steps determine the temperature profile at the drawing
process, where a fixed mandrel is used to enlarge the pre-
form diameter (circumferential orientation). Additionally,
the increased pipe speed after the drawing process, con-
trolled by haul-offs, stretches the pipe in length, leading
to an axial orientation of the polymer chains.

The specific production line which is used to develop
and validate the methods consists of 9 cooling and con-
ditioning steps with varying lengths (see Fig. 1) where
forced and mixed convection of water and air are involved.
As described in Table 1, within three steps the pipe is
in contact with ambient air where mixed convection is as-
sumed. In the other steps, the pipe is shielded from the en-
vironment and subject to forced convection either through
spray cooling (see Fig. 2), immersion cooling or fanned air
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Figure 2: Active spray cooling in process step 1 as an example of
forced convection with water as coolant.

Step Type Convection Fluid
1 Spray Cooling Forced Water
2 Immersion Cooling Forced Water
3 Spray Cooling Forced Water
4 Ambient Air Mixed Air
5 Spray Cooling Forced Water
6 Ambient Air Mixed Air
7 Conditioning Forced Air
8 Spray Cooling Forced Water
9 Ambient Air Mixed Air

Table 1: Details of the cooling and conditioning steps for the under-
lying pipe extrusion line.

conditioning. At the end of these steps, an infrared tem-
perature sensor is mounted above the moving pipe at x6.
Apart from that, a thermocouple sensor is located after the
extruder within the die head to measure the melt temper-
ature. Consequently, only sparse information is available
for the identification process. However, since the compo-
nents 4, 6 and 9 are partially open, manual measurements
can be performed within these steps indicated by x̃k to
facilitate the identification.

In addition to multiple cooling and conditioning steps,
different pipe dimensions can be produced in the same
production line. These products have different diameters,
wall thicknesses and production speeds, while the material
(PVC) remains the same. As a result, the cooling effect on
the pipe differs among different dimensions, leading to 9
unknown heat transfer coefficients for each pipe dimension
which must be identified with sparse measurements.

2.2. Direct Model

To model the cooling and conditioning process, a La-
grangian view is used, meaning that one cross-section of
the pipe is followed through the line at a time. Addition-
ally, assuming homogeneous boundary conditions along
the circumference reduces the problem domain to one slice
of the cross-section moving through the line. Consequently,

the one-dimensional transient heat equation in polar coor-
dinates is considered as governing equation.

∂u

∂t
− α(u)

r

(
∂u

∂r
+ r

∂2u

∂r2

)
= 0 (1)

The temperature is a function of time t and radius r
and denoted by u = u(r, t). The radial heat transfer within
the pipe wall is determined by the temperature dependent
thermal diffusivity α(u) which is a function of material
properties, namely thermal conductivity λs, material den-
sity ρ and specific heat capacity cp.

α(u) =
λs

ρcp(u)
(2)

In the case of PVC, cp has a nonlinear dependency on
temperature whereas this relationship is usually experi-
mentally assessed and available in diagrams, particularly
for temperatures above the glass transition temperature
and therefore, above its operating range. Consequently,
the temperature dependency as provided in [23] is approx-
imated with the following logistic function.

cp(u) = 920 + 2.4u+
300

1 + e−(u−75)
(3)

The initial condition for the direct model is assumed to
be homogeneous from inner rin to outer radius rout, which
are defined by the specific pipe dimension.

IC: u(r, t = 0) = u0 = const, r ∈ [rin, rout] (4)

The radial domain of the heat equation requires two
boundary conditions. On one hand, since the center of the
pipe is filled with air, which is neither cooled nor fanned
and has a significantly lower specific heat capacity than
PVC, the influence is negligible. Therefore, an adiabatic
Neumann condition is specified on the inner pipe surface.

BC1:
∂u

∂r
= 0, at r = rin (5)

On the other hand, the outer surface of the pipe is
subject to a convective (Robin) boundary condition, where
hij denotes the convective heat transfer coefficient for a
specific process step i and pipe dimension j and uai the
ambient temperature.

BC2:
∂u

∂r
= −hij(u− uai

), at r = rout

∀i = 1 . . . ns and ∀j = 1 . . . nd

(6)

Since the investigated pipe production line consists of
nine cooling and conditioning steps (ns = 9) and several
pipe dimensions (nd > 1), the total number of unknown
heat transfer coefficients is nh = ns × nd.

In well-defined settings, the relationship between prob-
lem dimension (characteristic length, lj), heat transfer co-
efficient and thermal conductivity of the surrounding fluid
λFi

can be described by the Nusselt number Nui [24].

Nui =
hij lj
λFi

, ∀i = 1 . . . ns and ∀j = 1 . . . nd (7)
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Figure 3: Grid independence study at r = rout to determine an appropriate mesh size (dashed line) of the FE model.

The Nusselt number is determined as empirical correlation
based on Prandtl number Pri and Reynolds number Rei
for forced convection or Grashof number Gri for natural
convection.

Nui =

{
f(Rei,Pri), forced convection

f(Gri,Pri),natural convection
(8)

Even though λFi
is known for water and air at different

temperatures, the characteristic length and the function
for computing Nui are largely unknown, apart from prob-
lems with limited complexity [6]. As a consequence, the
proposed method bypasses the need for empirical corre-
lations (8), while still integrating the knowledge of gen-
eral dependencies (7) to reduce the number of unknown
parameters via decomposing the heat transfer coefficients
(see below).

3. Methodology

The proposed methodology consists of four main steps.
First, a high-fidelity FE model generates randomized data
in an appropriate parameter range. Second, a small num-
ber of basis functions are extracted via POD, which cover
the main dynamics of the system. Third, the governing
heat equation is projected on these basis functions via the
Galerkin method to build a ROM. Finally, the unknown
heat transfer coefficients are identified and validated on
simulated and experimental data from an actual produc-
tion line.

3.1. Grid Independence Study for Finite Element Model

To extract the main dynamics via the POD, a high-
fidelity FE model is created based on aforementioned equa-
tions for heat transfer (1), initial condition (4) and bound-
ary conditions (5, 6). The FE model is implemented via

the Matlab pdepe function which relies on the ode15 solver
to dynamically choose appropriate time steps for temporal
integration. The nonlinear thermal diffusivity α(u) is up-
dated at each time step according to the temperature u. A
decisive factor for the accuracy of the FE model is the num-
ber of nodes nnodes (elements) in the mesh and therefore
its DOF to approximate the spatial domain. In general,
finer mesh sizes improve the accuracy, whereas diminishing
returns are expected leading to a trade-off between model
complexity and accuracy. To determine a suitable number
of nodes, a grid independence study is performed [10, 16]
where the nodes are uniformly distributed along the radial
direction.

Since an adiabatic boundary on the inside is assumed,
large temperature gradients in radial direction are only
expected close to the outer surface of the pipe, particularly
at the beginning of the line. Therefore, as shown in Fig. 3,
the grid independence study is performed for temperatures
on the outer surface r = rout.

All simulation runs were initialized with u0 = 190 °C
with a simulated duration of 50 seconds. As depicted in
Fig. 3a for different nnodes with linear shape functions, the
simulated outer surface temperature differs significantly at
the beginning and approach similar values after 50 seconds
(apart from nnodes = 5). Consequently, the first seconds
are crucial for selecting a sufficient number of FE-nodes,
which is shown in detail in Fig. 3b. The outer surface
temperature for different points in time show that a res-
olution of nnodes = 100 approximate the spatial domain
accurately from the beginning.

The selected number of FE-nodes is used to generate
input (train) data Xj for the POD for all nd pipe dimen-
sions. Additionally, a test data set is generated to validate
the approximation capabilities of the resulting ROM. Both
data sets are generated with 60 randomized steps lasting
60 seconds each, where the ambient temperature ua (20-
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80 °C) and convective heat transfer coefficient h (1-1500
W/(m2K)) are drawn uniformly to cover a wide range of
dynamical behavior [25].

3.2. Proper Orthogonal Decomposition

The underlying assumption of a POD is that the be-
havior of many dynamical systems can be accurately ap-
proximated by a few dominant patterns. To extract these
patterns the singular vector decomposition (SVD) is used,
where a given matrix X ∈ Rn×m is decomposed into a ma-
trix of left singular vectors U ∈ Rn×n, a diagonal matrix
Σ ∈ Rn×m consisting of singular values σi and a matrix of
right singular vectors V T ∈ Rm×m.

X = UΣV T (9)

The column vectors in U represent the optimal spatial ba-
sis functions ϕp (POD modes) listed in descending order.

U =


ϕ1 ϕ2 . . . ϕn


 (10)

Consequently, the characteristic of the SVD ensures, that
selecting the first np basis functions leads to an optimal
matrix approximation [26, 27]. As shown in Fig. 4 for
the first 10 singular values for the input (train) data Xj

(described above) of one pipe dimension j, the cumulative
normalized value

∑np

p=1 σp/
∑n

p=1 σp quickly increases to
over 99 % approximation capabilities. The resulting spa-
tial POD modes associated with the first 4 singular values
are depicted in Fig. 5. The POD modes are determined
for each pipe dimension separately and are constant over
time and independent of α(u).
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Figure 4: Cumulated normalized singular values determined by the
POD for the input (train) data Xj of one pipe dimension j.

3.3. Galerkin Method

To project the governing equation, the Galerkin method
is applied where the heat equation (1) is multiplied with
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Figure 5: Spatial basis functions ϕp(r) determined by the POD for
the input (train) data Xj of one pipe dimension j.

optimal POD basis functions ϕp and integrated over the
entire 1d spatial domain [rin, rout].

∫ rout

rin

ϕp
∂u

∂t
dr −

∫ rout

rin

ϕp
α

r

∂u

∂r
dr−

∫ rout

rin

αϕp
∂2u

∂r2
dr = 0, ∀p = 1 . . . np

(11)

To account for boundary conditions, Green’s first iden-
tity is used, which results in an integration term over the
boundary Γ and the radial domain [rin, rout] respectively.

∫ rout

rin

αϕp
∂2u

∂r2
dr =

∫

Γ

αϕp
∂u

∂r
dΓ−

∫ rout

rin

∂αϕp

∂r

∂u

∂r
dr

(12)
To explicitly include the boundary conditions in the ROM,
the integration over Γ is solved and substituted into (11).

∫ rout

rin

ϕp
∂u

∂t
dr −

∫ rout

rin

ϕp
α

r

∂u

∂r
dr +

∫ rout

rin

∂αϕp

∂r

∂u

∂r
dr+

α(rout)ϕp(rout)h[u(rout)− ua] = 0

(13)

To discretize the time domain the implicit Euler back-
ward method is formulated based on a temporal step size
∆t.

∂u

∂t
≈ u(t+∆t)− u(t)

∆t
(14)

Additionally, an approximation function uh is defined for
u(r, t+∆t), where np denotes the number of basis functions
ϕq and aq the time dependent coefficient.

u(r, t+∆t) ≈ uh =

np∑

q=1

aq(t+∆t)ϕq (15)

Substituting the approximation function uh into (13)
yields the Galerkin approximation in discretized form.

6
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rin

ϕp

np∑

q=1

aq(t+∆t)ϕqdr−

∆t

∫ rout

rin

ϕp
α

r

np∑

q=1

aq(t+∆t)
dϕq

dr
dr+

∆t

∫ rout

rin

dαϕp

dr

np∑

q=1

aq(t+∆t)
dϕq

dr
dr+

∆tα(rout)ϕp(rout)h

np∑

q=1

aq(t+∆t)ϕq(rout)−
∫ rout

rin

ϕpu(t)dr −∆tα(rout)ϕp(rout)hua = 0,

∀p = 1 . . . np

(16)

Extracting the unknown coefficients a(t+∆t) leads to
a system of linear equations to be solved for a⃗ ∈ Rnp in
each time step, representing the reduced order model with
np degrees of freedom.

Aa⃗ = b (17)

The entries of matrix A are constructed as follows.

Apq =

∫ rout

rin

ϕqϕpdr −
∫ rout

rin

ϕp
α

r

dϕq

dr
dr+

∆t

∫ rout

rin

dαϕp

dr

dϕq

dr
dr +∆thα(rout)ϕp(rout)ϕq(rout)

∀p, q ∈ [1, np]

(18)

Furthermore, the entries of b are determined by the fol-
lowing equation.

bp =

∫ rout

rin

ϕp

np∑

q=1

aq(t)ϕqdr+

∆thα(rout)ϕp(rout)ua, ∀p = 1 . . . np

(19)

To select a suitable number np of basis functions ϕp,
the mean absolute percentage error (MAPE) is evaluated
over the number of time steps nt and spatial nodes nnodes

for each np.

MAPEnp
=

1

nt nnodes

nnodes∑

i

nt∑

j

u(ri, tj)− û(ri, tj)

u(ri, tj)
(20)

The simulated temperatures from the high-fidelity FE
model and its approximation from the ROM are denoted
by u(r, t) and û(r, t) respectively. The resulting MAPE
scores based on ∆t = 1 for train and test data sets are
shown in Fig. 6. Due to the wide range of paramet-
ric variations in the POD input data (train), the ROM
approximates both data sets similarly well. Additionally,
using a long simulation time of 3600 seconds for the vali-
dation ensures that the ROM does not diverge within the

relevant time span. Consequently, np = 4 POD modes and
∆t = 1 are selected for the parameter identification, which
reduces the DOF by a factor of 25 (96 %) while maintain-
ing high accuracy with a MAPE score of 0.11 % (train)
and 0.13 % (test) in comparison to the high-fidelity FE
model. Additionally, the number of arithmetic operations
to solve the system of equations (17) is reduced by 94.4 %
from 496 to 28.
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Figure 6: Mean absolute percentage error for approximating the train
(POD input) and test data via the Galerkin method over the entire
spatial and time domain for one pipe dimension j.

3.4. Parameter Identification

To identify the convective heat transfer coefficients of
the outer boundary condition, the identification procedure
relies on temperature measurements along the production
line. The problem domain consists of ns = 9 cooling and
conditioning steps and nd different pipe dimensions, lead-
ing to an Hns×nd matrix of nh unknown coefficients.

H =



h11 . . . h1nd

...
hns1 . . . hnsnd


 (21)

Fundamentally, the optimization problem can be formu-
lated where the optimal parameters in H must be identi-
fied to minimize a loss function L.

H∗ = argmin
H

L (22)

To reduce the number of unknown parameters and in-
tegrate the dependencies described by the Nusselt number,
the matrix H can be decomposed, where each element hij

is determined as a function of component-specific Nusselt
number Nui, fluid-specific thermal conductivity λFi and
dimension-specific characteristic length lj .

hij =
NuiλFi

lj
,∀i = 1 . . . ns and ∀j = 1 . . . nd (23)
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As a consequence, the optimization problem is restated
in terms of Nui and lj (λFi

is known for air and water)
through substituting (23) into subsequent loss functions.
Therefore, instead of ns times nd unknown parameters,
only ns + nd parameters need to be identified, reducing
the problem complexity from quadratic to linear.

To find a solution to this optimization problem, the
sum of squared errors is used as data loss function Ldata

where the temperature measurements u(rout, tm) on the
outer surface r = rout at sparse points in time tm and the
output of the ROM û(rout, tm) for nd pipe dimensions and
nm measurement points (sensors) are compared.

Ldata =

nd∑

j=1

nm∑

k=1

(u(routj , tmk
)− û(routj , tmk

))2 (24)

However, uniqueness of the solution is not guaranteed
due to the ill-posed nature of the IHTP, which might even
lead to physically infeasible solutions. Consequently, we
propose to extend the loss function with a lower boundary
hij ≥ 0 as positivity constraint, a l2 regularization [4] and
well-known relative constraints to improve the convergence
of the identification process.

First, to ensure physically feasible coefficients, a loss
term Lpos is added to enforce positive heat transfer coeffi-
cients, where λpos specifies the weight of constraint viola-
tions defined by the slack variable lposi .

Lpos =

ns∑

i=1

(λposlposi)
2 (25)

lposi =

{∑nd

j=1(hij), if hij < 0

0, otherwise
(26)

Second, l2 regularization (also known as Tikhonov reg-
ularization) is applied to penalize large coefficients and
ease the identification process [4, 11]. Therefore, the l2
loss function Ll2 is determined by the sum of squared and
weighted (λl2) values over all heat transfer coefficients.

Ll2 =

ns∑

i=1

nd∑

j=1

(λl2hij)
2 (27)

Third, while simultaneously considering multiple cool-
ing and conditioning steps increases the level of complex-
ity, it also provides a rich source of information. In partic-
ular, since it is possible to define relative constraints based
on the process steps given in Tab. 1:

• h of mixed convection < h of forced convection,
provided that the same fluids are involved:
h4, h6, h9 < h7

• h of air based convection < h of water based convec-
tion, due to higher thermal conductivity of water:
h7 < h2

• h of immersion cooling < h of spray cooling:
h2 < h1, h3, h5, h8

Even though these constraints could be enforced via
carefully chosen individual λl2 weights for each coefficient,
it proves to be cumbersome and is prone to subjective
influence. Alternatively, a discontinuous constraint func-
tion, similar to the positivity constraint, could be imposed
where coefficients are significantly penalized as soon as a
constraint is violated. However, the discontinuity of the
loss function causes issues in the convergence, due to mu-
tually constraining coefficients moving back and forth dur-
ing the identification.

In contrast to that, we propose to use soft constraints,
implemented via logistic functions to enforce relative con-
straints. The midpoint of the logistic function is defined
as the constraining coefficient on the upper boundary hu.
Additionally, to ensure that the growth rate of the function
remains meaningful over different coefficient magnitudes,
it is adaptively calculated based on the current absolute
value of hu and a fixed parameter k which is experimen-
tally selected. The loss term for each mutually constrain-
ing pair of coefficients is defined as follows,

lrel(hu, hl) =
1

1 + exp

(
−(hl − hu)

k

abs(hu)

) , (28)

where hl < hu is imposed.
Consequently, the overall loss term for relative con-

straints Lrel is computed as the sum of squared constraint
violations lrel, where λrel specifies the weight of the con-
straints.

Lrel =
∑

(λrellrel)
2 (29)

Adding each loss term leads to an overall loss function
which addresses the ill-posed nature of the IHTP and en-
ables a robust identification of heat transfer coefficients in
spite of sparse and noisy measurements in the time do-
main.

H∗ = argmin
H

(Ldata + Lpos + Ll2 + Lrel) (30)

To solve this optimization problem, a wide range of al-
gorithms is available [4], whereas the Levenberg-Marquardt
(LM) algorithm is selected as a gradient-based approach
well-suited for nonlinear problems [8, 22].

4. Simulation Results

To validate the proposed methodology, simulated as
well as experimental temperature measurements are used.
The general simulation setup, the identifiability of coeffi-
cients and the effect of relative constraints and l2 regular-
ization are described in the following subsections.

8



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

4.1. Simulation Setup

A simulation run, meaning following one cross-section
of the pipe through the entire production line, requires pa-
rameters and model inputs, where parameters are inherent
to the system or pipe dimensions and inputs can vary for
each production (simulation) run. The parameters of the
system are aligned with the actual production line and
material. Consequently, ns = 9 cooling and conditioning
steps as well as different pipe dimensions (rin, rout) are
considered. Additionally, the density and thermal conduc-
tivity of PVC are ρ = 1400 kg/m3 and λS = 0.17W/(mK)
respectively while the temperature dependent heat capac-
ity is given in (3).

The simulation results for one exemplary production
run and pipe dimension according to the actual settings
(see Fig. 1 and Tab. 1) with known initial temperature u0

and ambient temperature uai are shown in Fig. 7. Impor-
tantly, each discontinuity in the outer pipe temperature
marks the entrance into a new process step with poten-
tially different ambient temperature (ua, green line) and
coefficients which were arbitrarily chosen in W/(m2K) for
this exemplary simulation run:

h = [1250, 750, 2000, 100, 2500, 100, 300, 1250, 25]
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Figure 7: Inner and outer pipe wall temperature for one exemplary
simulation run with manual x̃k and fixed (x6) sensors corresponding
to the actual production process.

In addition to the resulting temperatures, Fig. 7 shows
the position of manual x̃k and fixed sensors xk correspond-
ing to the production process. Depending on the produc-
tion speed vxj and sensor locations, temperature measure-
ments are collected at t = tmk

= xk/vx. In this regard
x6 corresponds to the fixed temperature sensor at the end
of the cooling and conditioning part (see Fig. 1). Fur-
thermore, the sensors at x̃k∀k < 6 indicate the position of
manual temperature measurements in partially open pro-
cess steps.

The radial temperature distributions from inner rin to
outer rout radius at four sensor locations are depicted in

Fig. 8. As shown, while the pipe is moving through the
line, the temperature gradient flattens out from the start
x = 0 to the end of the line at x6.
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Figure 8: Radial temperature distributions u(r, tmk ) at four sensor
locations for one pipe dimension j.

The described simulation setup is used to analyze the
identifiability of coefficients with limited measurements
and the effect of l2 regularization and relative constraints.

4.2. Identifiability of Heat Transfer Coefficients

To determine the general identifiability of heat transfer
coefficients with limited measurements, the Sobol global
sensitivity method is used [28]. In contrast to a local sen-
sitivity analysis, for instance based on the Jacobian ma-
trix, the global sensitivity contains information about the
entire problem space.
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Figure 9: First order Sobol sensitivity indices for each unknown heat
transfer coefficient hi and sensor location (x̃k, xk).

In this case, the Sobol sensitivity relies on a Monte
Carlo simulation with varying parameter values to com-

9



Journal Pre-proof
Jo
ur

na
l P

re
-p

ro
of

pute the sensitivity indices based on the temperature vari-
ance in each sensor location. The resulting first order in-
dices for all coefficients hi and sensor locations (x̃k, xk)
are column-wise normalized as shown in Fig. 9.

These indices can be interpreted as global identifiabil-
ity information when a specific sensor is available. For
instance, the sensor measurements at x̃2 contain a signif-
icant amount of information about h3 and h4. Therefore,
these coefficients are easier to identify given the sensor at
location x̃2 in comparison to the other coefficients. As
shown, since only six manual and fixed sensor locations
are accessible in the actual production process some coef-
ficients (h1, h2, h7, h8) are difficult to identify, proving the
need for additional considerations to address the ill-posed
nature.

4.3. Monte Carlo Analysis

To determine the effect of relative constraints and l2
regularization, a Monte Carlo (MC) simulation with nmc =
100 randomized repetitions is performed for the uncon-
strained (only positivity is enforced via λpos = 100) and
constrained (λl2 = 10−4, λrel = 2, k = 10) identification
procedure For this purpose, one simulated production run
with arbitrary coefficients provides the target temperature
measurements for all six sensor locations. To randomize
the repetitions, a Gaussian noise e is added to the target
output, where the standard deviation std(e) is computed
with a signal-to-noise ratio (SNR) of 100 leading to an
added noise of 1 % with regard to the simulated tempera-
ture u(rout, tmk

) at each sensor location xk.

SNR =
u(rout, tmk

)

std(e)
(31)

Additionally, to analyze the robustness of the proposed
identification procedure, the initial parameter guesses for
Nusselt numbers Nui0 and characteristic length lj0 are ran-
domly drawn for each repetition from an uniform distri-
bution ranging from 0− 100 and 0− rout respectively.

As a result, while the unconstrained procedure only
identifies coefficients accurately when the Sobol indices are
high (see Fig. 9), the proposed loss function increases the
overall identifiability and accurately identifies two more
coefficients (h7, h8) as shown in Fig. 10. Even though
the first two coefficients (h1, h2) are still difficult to iden-
tify, the proportions are similar to the actual coefficients,
in contrast to the unconstrained identification procedure
showing the effectiveness of the proposed methodology.

5. Experimental Results

After validating the general effectiveness of the pro-
posed methodology with simulated data, the applicability
and properties of the identification procedure are analyzed
on experimental temperature measurements.

h1 h2 h3 h4 h5 h6 h7 h8 h9
heat transfer coefficients hi
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Figure 10: Identified coefficients with mean values (bar height) and
standard deviation (+/- σ) resulting form a Monte Carlo simulation
for randomized unconstrained and constrained identification proce-
dures.

5.1. Experimental Setup

As shown in Fig. 1, the line consists of 9 cooling and
conditioning steps with different lengths and characteris-
tics. The PVC temperature in the die head is measured
via a thermocouple sensor directly within the material,
representing the initial condition of the ROM. Moreover,
at the end of step 9, an infrared temperature sensor is
mounted above the moving pipe and continuously mea-
sures the outer surface temperature (see Fig. 11) at the
location x6.

Figure 11: Infrared temperature sensor providing continuous mea-
surements at the end of the cooling and conditioning process at x6.

To ease the parameter identification and validation,
additional manual measurements were performed with a
handheld infrared thermometer at x̃k in all process steps
where the pipe surface is at least partially accessible (see
Fig. 1 and 7). To improve the robustness of manual mea-
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Figure 12: Simulation results of cooling and conditioning steps with identified parameters, where the production run on the left was used
during identification.

surements, 10 consecutive measurements are performed for
each sensor location at an interval of 10 seconds. These
measurements were performed for three different produc-
tion runs (1, 5, 10) and two dimensions. The resulting
mean target temperatures for both manual and automated
measurements are shown in Tab. 2.

Run Id x̃1 x̃2 x̃3 x̃4 x̃5 x6

1 (250mm) 35.7 61.2 34.5 52.4 55.4 73.1
2 (110mm) - - - - - 73.6
3 (160mm) - - - - - 74.1
4 (315mm) - - - - - 69.2
5 (110mm) 34.8 62.1 38.8 54.6 48.9 70.6
6 (110mm) - - - - - 74.8
7 (110mm) - - - - - 74.3
8 (315mm) - - - - - 68.4
9 (250mm) - - - - - 73.5
10 (110mm) 34.1 61.0 45.1 52.2 56.7 77.2
11 (160mm) - - - - - 74.4

Table 2: Manual (x̃k) and automated (x6) temperature measure-
ments collected from different production runs (id) and dimensions
used for parameter identification and validation.

5.2. Identification with Experimental Data

The measurements in Tab. 2 are used to validate the
proposed methodology for parameter identification based
on a ROM with 4 spatial modes. For that purpose, the
data from 4 production runs (1, 3, 4, 10) are used in
the identification to minimize the loss function (30) with
the Levenberg-Marquardt optimization algorithm. Since
nd = 4 pipe dimensions and ns = 9 process steps are con-
sidered, the number of unknown convective heat transfer
coefficients hij amounts to 36 which are decomposed in 9
Nusselt numbers and 4 characteristic lengths representing
13 unknown parameters for the identification procedure.

To demonstrate the robustness of the parameter iden-
tification, 100 repetitions with randomized initial parame-
ter guesses for Nusselt number (0 − 100) and character-
istic length (0 − routj ) are performed. For regulariza-
tion purposes, λpos = 100 for the positivity constraint,
λl2 = 2×10−4 to promote smaller coefficients and λrel = 2
as well as k = 10 to enforce aforementioned relative con-
straints were chosen.

The resulting heat transfer coefficients over 100 ran-
domized identification procedures is shown in Fig. 13 for
one pipe dimension. The coefficients are consistently iden-
tified with a mean variance σ̄2 of 1.4×10−3 and physically
feasible. Even though the absolute values of hi vary be-
tween pipe dimensions depending on the identified charac-
teristic length, the proportions remain the same.

h1 h2 h3 h4 h5 h6 h7 h8 h9
heat transfer coefficients hi
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Figure 13: Identified mean heat transfer coefficients hi for a 250mm
pipe over 100 randomized repetitions.

The resulting simulated outer surface temperature at
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r = rout with the identified mean coefficients in compar-
ison with available temperature measurements are shown
in Fig. 12 for two production runs with manual measure-
ments. As can be seen, the simulation provides a good
fit for measurements which were used during the identi-
fication (left) and the others which were not used (right)
with a MAPE score of 1.5 % (train) and 4.9 % (test) re-
spectively. The difference in the train and test scores is
mainly caused by two manual measurements during one
production run (id 5) at the locations x̃3 and x̃5, which
can be explained by large temperature gradients in these
areas and therefore, a high sensitivity to small variations
during manual measurements.

5.3. Convergence Analysis

Apart from accurate results, an important aspect of ev-
ery identification method is its convergence behavior. In
particular when the initial parameter guesses have a wide
range due to unknown absolute values. In the case above,
the initial guesses for the Nusselt number (0-100) and char-
acteristic length (0-rout) effectively lead to a range from 0
to ∞ for the initial coefficients hij in H. Additionally, rel-
ative constraints are not enforced during the random gen-
eration of initial guesses leading to constraint violations at
the beginning of the parameter identification.
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Figure 14: Analysis of required function evaluations to converge to
a local minimum over 100 randomized repetitions for two values of
k, see (28), where k = 10 was used during identification and the
maximum number of function evaluations was limited to 1000.

In spite of these difficulties, the proposed methodology
based on positivity constraints, relative constraints and
l2 regularization with corresponding weights and settings
(see above) requires on average 470 function evaluations
over 100 randomized repetitions. Importantly, the number
of function evaluations of the loss function include evalu-
ations required to numerically approximate the Jacobian
matrix used by the Levenberg-Marquardt optimization al-
gorithm. As shown in Fig. 14 for k = 10 (28), the number

of function evaluations closely resembles a normal distri-
bution, where 800 or more evaluations are highly unlikely.
However, the growth rate for the soft constraints must be
chosen carefully due to its impact on the convergence be-
havior, as depicted by k = 1 in Fig. 14.

5.4. Approximation Error

In addition to the general quality and convergence be-
havior of the identification, the error caused by approxi-
mating the high-fidelity FE model is analyzed. For that
purpose, the identified mean heat transfer coefficients are
used to simulate production run 1 (see Tab. 2) with the
FE model. The results are used as basis for computing the
MAPE (20) over the entire time and spatial domain for a
range of POD modes.

Similar to the synthetic validation conducted during
the development of the ROM (see Fig. 6), the MAPE de-
creases rapidly from 40 % to below 1 %. However, using
the identified coefficients generally results in higher rela-
tive errors when compared to the synthetic results. This
might be caused by the limited range (0-1500) of coef-
ficients used for the POD mode generation in contrast
to coefficients beyond 1500 W/(m2K) encountered during
the identification procedure. For instance, using 4 POD
modes increases the MAPE from 0.1 % to 0.3 %, which is
still practically acceptable due to a significant reduction
of model complexity and execution time when compared
to the high-fidelity model.

5.5. Effect of Identification Settings

To analyze the effect of l2 regularization, relative con-
straints, and their settings (weights and growth rate), 100
randomized identification procedures were performed for
different configurations. Each identification procedure was
limited to 1000 function evaluations, since appropriate set-
tings usually require far less iterations, as shown before.

The settings and results are summarized in Tab. 3,
where λl2 , λrel and k represent the configuration for the
weights of l2 regularization and relative constraints as well
as the growth rate for the soft constraints. Moreover, the
fourth column indicates how many repetitions converged
within 1000 function evaluations, whereas the MAPE score
is provided separately for train (production runs 1, 4, 5, 8)
and test data sets. In addition to the convergence rate and
MAPE scores, essential aspects of the identification are the
number of repetitions that resulted in violated positivity
hi > 0 and relative constraints hl > hu as well as the mean
variance over all identified coefficients σ̄2(h).

As shown in Tab. 3, the settings used during the ex-
perimental validation (id 1) lead to a convergence rate of
100 % with acceptable MAPE scores and no constraint vi-
olations. Reducing the growth rate to k = 5 (id 2) or k = 1
(id 3, see Fig. 14) or removing the l2 regularization (id 4)
leads to worse convergence behavior and a high variance
in identified coefficients. In contrast to that, ignoring the
relative constraints (id 5) does not affect the convergence
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Settings MAPE in % Violations
Id λl2 λrel k Converged Train Test hi > 0 hl < hu σ̄2(h)
1 2× 10−4 2.0 10 100 1.46 4.89 0 0 1.4× 10−3

2 2× 10−4 2.0 5 99 1.49 4.81 1 1 2.0× 103

3 2× 10−4 2.0 1 71 1.52 4.81 2 2 4.5× 103

4 0.0 2.0 10 24 2.33 4.35 4 1 1.7× 1012

5 2× 10−4 0.0 - 100 1.44 4.99 100 0 2.3× 10−2

6 0.0 0.0 - 100 1.32 5.08 100 0 8.5× 1013

Table 3: Effect of l2 regularization and relative constraints on convergence rate, mean absolute percentage error (MAPE) and constraint
violations (changes to Id 1 are highlighted).

rate, but results in physically infeasible coefficients. Sim-
ilarly, if neither l2 regularization nor relative constraints
are enforced (id 6), all repetitions converge within 1000
function evaluations, but the resulting coefficients violate
physical constraints. Particularly, identified coefficients
(h1, h2, h7) with minor identifiability (see above) are infea-
sible due to values beyond 106 W/(m2K). Consequently,
the MAPE score remains similar over different settings,
however, convergence and constraint compliance can only
be ensured with l2 regularization and relative constraints.

6. Discussion

Using a ROM based on dominant POD modes reduces
the model complexity and therefore, the execution time
significantly while maintaining high accuracy which is ben-
eficial for both, parameter identification and subsequent
process control and optimization. The proposed method-
ology was validated with simulated and experimental tem-
perature measurements from a multi-step cooling and con-
ditioning process.

The number of considered POD modes in the ROM
and their validity for encountered parameter ranges (e.g.
ambient temperatures and coefficients) determine the the-
oretical lower bound on the approximation error. Conse-
quently, a trade-off must be found between model complex-
ity (execution time) and accuracy where the transitioning
phases between process steps are crucial due to high tem-
perature gradients. Similarly, while assumptions regarding
the forward model, such as an adiabatic inner boundary or
homogeneous ambient conditions along the circumference,
can significantly reduce the problem domain, they must
be evaluated carefully to avoid large deviations from the
actual process.

As clearly shown by the global identifiability analysis,
the number and location of temperature sensors have a
significant impact on the identifiability of individual heat
transfer coefficients. In particular, when two or more pro-
cess steps are directly connected without any intermediate
temperature measurements. In such cases, the ill-posed
nature of the IHTP can be successfully addressed by l2
regularization and relative constraints, as shown by the
Monte Carlo analysis for simulated measurements. How-
ever, if some process steps have only a minor influence on

the production process, the associated coefficients are dif-
ficult to identify accurately, while the proposed methodol-
ogy still keeps the proportions due to relative constraints.
Importantly, the influence of each process step is specific
to the process and determined by the ambient tempera-
ture ua, length of the process step, temperature difference
u(rout, t)− ua, convection type and fluid in use.

When applied to actual measurements from the pipe
extrusion line, the proposed methodology resulted consis-
tently in physically feasible heat transfer coefficients while
maintaining a good fit to the measurements. Due to manu-
ally measured temperatures with a handheld infrared ther-
mometer some uncertainties are expected regarding the
exact measurement point, which can lead to unexplained
measurement differences in areas with large temperature
gradients. Nevertheless, one key strength of the proposed
methodology is its data efficient identification procedure
where sparse measurements are sufficient to identify phys-
ically sound coefficients for each process step and pipe di-
mension.

Furthermore, the analysis of the convergence behav-
ior, identification consistency and constraint compliance
shows significant improvements in all aspects when apply-
ing l2 regularization and relative constraints. Naturally,
the settings (weights λ and growth rate k) of the iden-
tification procedure affect the results and must be chosen
either manually or automatically [11], whereas both are fa-
cilitated by the reduced execution time of the ROM while
maintaining high accuracy when compared to the high-
fidelity FE model. Similarly, even though the Levenberg-
Marquardt optimization algorithm performed well, other
algorithms, such as the conjugate gradient method [29],
might be considered as well.

7. Conclusion

To effectively control and optimize cooling and condi-
tioning processes in pipe extrusion lines, accurate and com-
putationally efficient models are needed. However, heat
transfer coefficients are hardly known for actual produc-
tion lines and temperature measurements of the pipe sur-
face are only sparsely available in multi-step cooling and
conditioning processes leading to an ill-posed inverse heat
transfer problem.
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To address these challenges a methodology consisting
of an efficient reduced order model based on proper or-
thogonal decomposition and the Galerkin method as well
as a constrained parameter identification was proposed.
Regarding the latter, l2 regularization and positivity con-
straints are enforced in addition to relative constraints to
make use of known relationships among cooling and con-
ditioning components. Moreover, to ease the parameter
identification a theory-based decomposition of heat trans-
fer coefficients was employed to reduce the number of un-
known parameters substantially.

It was shown with simulated and experimental mea-
surements, that the proposed methodology identifies heat
transfer coefficients consistently while complying to well-
known physical constraints in spite of sparse and noisy
temperature measurements. Therefore, the methodology
can be successfully and reliably applied to cooling and con-
ditioning processes in pipe extrusion lines and beyond, if
the governing equations are known for instance, in pres-
surized surge lines of nuclear power plants and melting
furnaces. Interestingly, extending the parameter identi-
fication to material properties (e.g. density, thermal con-
ductivity) or ambient temperatures is straight-forward and
the same methods for l2 regularization and relative con-
straints can be employed. Furthermore, the resulting re-
duced order model can not only be applied during param-
eter identification but also for subsequent process control
and optimization due to its computational efficiency.

Apart from this, several research directions for future
work were identified. On the one hand, extending the di-
rect model to include the heat conduction in azimuth direc-
tion, allows to directly consider varying ambient conditions
along the circumference. On the other hand, using auto-
matic differentiation methods, similar to physics-informed
neural networks, is expected to reduce the computational
effort during identification significantly, since numerical
approximation of the derivatives is no longer needed. In
addition to that, extending the identification procedure to
simultaneously identify heat transfer coefficients, material
properties and ambient conditions increases the applicabil-
ity substantially. Nevertheless, the characteristics of the
proposed methodology with its reduced order model, l2
regularization, relative constraints, and theory-based co-
efficient decomposition represent the foundation for future
work.
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