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Abstract: PVC pipe jacking is prone to cause yielding or buckling under the jacking force and may
lead to engineering failure. The relationship between the buckling modes, ultimate bearing capacity,
different diameter–thickness ratios, and length–diameter ratios of PVC pipe jacking under different
load forms was analyzed. The calculation methods for allowable jacking force and the single allowable
jacking distance are obtained through theoretical analysis and three-dimensional finite elements. The
buckling mode of the pipe under uniform load changes from symmetric buckling to asymmetric
buckling and then to the overall Euler buckling form as the length–diameter ratio increases. The
ultimate bearing capacity of the pipe approaches the theoretical value of yield failure when L/D ≤ 6.
For L/D > 6, the pipe undergoes buckling, and the ultimate bearing capacity determined by the axial
buckling value and the buckling load can be calculated according to the long pipe theory formula
when L/D > 8.5. Under eccentric loads, the failure mode transitions from local failure to Euler
buckling with increasing pipe length. The ultimate bearing capacity of pipe is obviously lower than
that of uniform load, but as the length–diameter ratio increases, this difference decreases until it
becomes consistent.

Keywords: pipe jacking; structural stability; buckling load; ultimate bearing capacity

1. Introduction

Pipe jacking is an advanced underground pipe-laying technology with less environ-
mental impact [1–4]. Only high-load-bearing pipe materials could be used in the early
stages of micro tunnels, such as concrete pipes, fiberglass-reinforced plastic pipes, and steel
pipes [5–7]. Although PVC is a high-quality material for water supply and drainage pipes,
it is often used for buried pipelines rather than trenchless methods. A low-load-bearing
pipe jacking system was developed, allowing PVC to be used in pipe jacking as technology
progressed [8,9].

An important factor that limited the use of PVC pipes in micro tunnels was its axial
bearing capacity [10,11]. An experimental setup was developed by Jemii et al. [12] to study
the circumferential mechanical characteristics of PVC pipes. Furthermore, a finite element
model was created to predict the mechanical response of the pipes under radial loads. The
stress characteristics of arch-shaped axial hollow wall PVC pipes, as well as the impact of
the pipe wall layout form on pipe stiffness and strength performance, were analyzed by
Tang et al. [13] based on buried model tests and simulation analysis. The conclusion that the
axial hollow wall is structurally preferable with a circular hole configuration was attained.
When considering the stability of PVC pipe jacking under axial load during construction,
studies on the stability of steel pipe jacking can serve as a reference. The relationship
between critical axial pressure for steel pipe jacking and various parameters has been
extensively researched by many scholars [14–16]. The theoretical derivation for axially
loaded cylindrical shells was conducted by scholars in the early 20th century. Fok [17]
used the energy method combined with the Rayleigh–Ritz trial function to analyze the
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buckling of long cylindrical shells under far-field hydrostatic pressure. The compressive
strain capacity of a pressurized pipeline under eccentric axial compression was numerically
studied by Tu [18]. At the same time, the effects of internal pressure and the ratio of pipe
diameter to wall thickness on the compressive strain capacity were studied.

Thus far, the current literature has seldom focused on the mechanical characteristics
and axial bearing capacity of PVC pipe jacking. Most of the research literature is mainly
focused on the circumferential bearing performance of buried pipes and the buckling
stability of steel pipe jacking [19–22]. Compared to steel pipes, the strength of PVC pipes is
lower, and yield failure or buckling in PVC might be observed when subjected to significant
axial pressure. Therefore, a study on the mechanical characteristics of PVC pipe jacking
under axial pressure is essential. The relationship between the ultimate bearing capacity
and PVC pipes with different lengths and diameters is also important to study, to prevent
the failure of the PVC pipe caused by jacking force.

This paper investigates the failure modes and mechanical properties of PVC pipe
jacking under axial uniform force and two eccentric loads through theoretical research
and numerical simulation. The influence of the diameter–thickness ratio and the length–
diameter ratio on the ultimate bearing capacity of PVC pipes are analyzed and compared
with theoretical formulas. Furthermore, the elastic buckling load and ultimate bearing
capacity of PVC pipes are obtained and, when combined with the study of the bearing
capacity of a single PVC pipe, the calculation method for the allowable jacking force and
the single allowable jacking distance are derived.

2. Methodology
2.1. Failure Modes under Axial Loads

A low-load one-time construction method is to use PVC pipe for jacking. In this
method, the frontal resistance required by the cutter head jacking acts on the spiral rod
inside the pipe. The PVC pipe only bears the friction resistance between the surrounding
soil and the outer surface of the pipe and is not affected by the head-on resistance. The axial
force of the PVC pipe is greatly reduced, and the risk of buckling of the PVC pipe during
jacking is also reduced. The force transfer mechanism enables PVC pipe to be applied in
pipe jacking engineering. The principle of PVC micro pipe jacking is shown in Figure 1.
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Figure 1. Schematic diagram of PVC pipe jacking principle.

However, although this method can be used to apply PVC pipe to the pipe jacking,
it still has the risk of buckling or yield failure under the action of axial force. It is of great
significance to clarify the ultimate bearing capacity and buckling modes of PVC pipe under
different conditions for pipe jacking construction to determine which type of failure is more
likely to occur in PVC pipes under different axial loads. The finite element model of PVC
pipe was established by ABAQUS 6.14 software. The shape change energy density theory
and cylindrical shell analysis theory were analyzed. The corresponding flow chart of this
paper is shown in Figure 2.
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(1) Energy of form-changed criterion
The energy of form-changed criterion refers to a strength theory used to determine if

a material undergoes yield failure, also known as the fourth yield criterion [23,24]. Yield
failure will occur when the shape changes specific energy at a point that reaches the level
at which the material yields under the complex state of stress. The formula for strength
conditions is shown in Equation (1):√

1
2

[
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2
]
≤ [σ] (1)

where σ1, σ2, and σ3 represent the three principal stresses at the critical point of the compo-
nent in the formula.

For PVC pipes under axial uniform force, yield failure is determined according to
Equation (2).

Pd = Ap ∗ σu (2)

where Ap is the cross-sectional area of the pipe, m2, and σu is the yield strength of the pipe
material, Pa.

(2) Cylindrical shell buckling theory
The failure form of PVC pipe jacking under axial loads can be similar to the buckling

of cylindrical shells. The buckling load of axially compressed cylindrical shells is influenced
by the length. They are classified into short cylindrical shells [25,26] and long cylindrical
shells [27] based on different buckling modes. The buckling load for short cylindrical
shells is calculated using Equation (3), while the buckling load for long cylindrical shells is
calculated using Equation (4).

Pcr =
2πEt2√
3(1 − ν2)

(3)

Pcr =
π3ED3t

8(µ0l)2 (4)

In the formula, E is the elastic modulus (N/m2), D is the diameter of the cylindrical
shell (m), t is the thickness of the cylindrical shell (m), ν is the Poisson ratio, l indicates
the length of the cylindrical shell (m), and µ0 is the effective length factor, which varies
depending on boundary conditions.
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2.2. Finite Element Model

The finite element models of the PVC pipe were developed using the ABAQUS 6.14
finite element software. To obtain more accurate results of PVC pipe jacking failure modes
and bearing capacity, the model was set as follows.

(1) Element and material: The PVC pipe was simulated by a three-dimensional shell
element and the elastic-plastic constitutive model was adopted for PVC pipe. According
to the experimental research and numerical simulation of previous scholars [12,28,29], the
elastic modulus can be taken as 3000 MPa and the compressive yield strength and tensile
yield strength are 86.71 MPa and 51.58 MPa, respectively. The finite element model of the
PVC pipe is shown in Figure 3, and the pipe parameters are listed in Table 1.
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Table 1. Pipe parameters of finite element model.

Material Density
(kg/m3)

Diameter
(mm) Wall Thickness (mm) Pipe Length (m)

Elastic
Modulus [28]

(MPa)

Compressive
Yield Strength
[12,28] (MPa)

Tensile Yield
Strength [29]

(MPa)
Poisson Ratio

PVC Pipe 1360 223.6 11.8 0.6 3000 86.71 51.58 0.319

(2) Element selection and mesh division: The simulation employed three-dimensional
shell elements referred to as S4R (four-node reduced integral shell element). S4R has good
applicability and can be automatically adjusted between thin and thick shell elements,
which can be used for large deformation calculations. The accuracy of the calculation
results is greatly affected by the number of elements [30]. To determine the selection of
element type and density, many simulations were carried out in this paper. The elastic
buckling results of S4R (four-node reduced integral shell element) and S8R (eight-node
reduced integral shell element) at the mesh density of 0.01 and 0.005 were compared under
method B, as shown in Table 2. The calculation results of the S4R type were closer to the
theoretical values, and the mesh density did not change much after 0.01. Therefore, the
three-dimensional S4R (four-node reduced integral shell element) was employed and the
number of pipe meshes for a 0.6 m length was 4186.

Table 2. The influence of mesh type and density on the results.

Mesh Type Mesh Density Simulated Values (kN) Theoretical Value (kN)

S4R
0.01 1421

1617
0.005 1414

S8R
0.01 1337
0.005 1389
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(3) Boundary condition and compression load: For the boundary condition setting of
the model, one end of the PVC pipe was fixed while the other end was hinged and the two
were coupled by the coupling command. The reference points were set at the center of both
ends of the shell and the two were coupled by the coupling command, and the boundary
conditions were set at these two reference points. The compressive load selects the force
load and the displacement load. The force load was applied by applying a concentrated
force at the force action or applying a shell edge load at the pressurized end section. The
displacement load controls its motion or deformation by applying a vector displacement to
the target force.

(4) Simulation methods: The static general analysis step is usually used to calculate the
structure with constant or increased structural stiffness in ABAQUS 6.14. If the structure
buckles or collapses, it is easy to have non-convergence problems which may prevent it
from calculating the post-buckling state. To compare the results of the Buckle–Riks analysis
step, two methods were used. The soil layers were not established and the interaction
between the pipe and the soil was not considered in the model. Method A: the static general
analysis step is selected, the axial pressure is simulated by applying the displacement load
to the reference point of the pressure end, and the load-displacement curve is output to
determine its bearing capacity. Method B: Buckle–Riks is used to calculate the buckling
eigenvalue, and then the defect is introduced to calculate the post-buckling result through
the Riks analysis step.

3. Results under Uniform Load

The buckling modes of PVC pipes under uniform axial load obtained using Method
A and Method B are shown in Figures 4 and 5, respectively. As shown in Figure 4, the
model was compressed in a corrugated manner under the static general analysis step, and
the compressive stress on the model was symmetrically distributed. Additionally, the
load-analysis step curve in Method A first increased and then decreased. It can be seen
from Figure 5 that in Method B, where the Buckle analysis step was used, the five buckling
modes of the short pipe exhibited varying deformation patterns.
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The first two buckling modes showed anti-symmetric buckling for two symmetric
points on the pipe; one is convex while the other is concave. The last three buckling
modes exhibited symmetric buckling, the number of circumferential waves generated
on the pipe gradually decreased, and the peak position appeared in the middle of the
pipe. The deformation of the pipeline under axial compression was mainly composed of
circumferential deformation and vertical deformation on the cross-section. The buckling
mode of the pipeline was greatly affected by the eigenvalue. In the fifth mode, only the
middle of the pipe produced a depression. From the first to the fifth mode, the length of the
deformed pipe gradually decreased, and the number of deformation waves also decreased.
The characteristic values were consistent with the buckling modes.
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mode 5.

The comparison of results from different theories and two simulation methods is
shown in Table 3. The results of simulation Method A were more aligned with the fourth
yield criterion, while the results from Method B were closer to the classical critical buckling
solution for short pipes. This size of PVC pipe was more likely to experience yield failure
first based on the results.

Table 3. Comparison between numerical results and theoretical results.

Fourth Yield Criterion Method A Short Pipe Theory Method B

Critical buckling load/kN 683.1 676.4 1617 1421

3.1. Method A Results

The comparison and error between the simulated and theoretical values under differ-
ent lengths, wall thicknesses, and diameters are shown in Table 4. The error in Table 4 is
obtained by 1 minus the simulated value divided by the theoretical value and the error
between the two is small, which can correctly reflect the accuracy of the simulation. The
changes in the simulated values and theoretical values of the axial bearing capacity of the
pipe with length, diameter, and wall thickness are shown in Figure 6. Only the length of the
pipe changed; the theoretical value for the PVC pipe’s bearing capacity remained constant.
This is because the axial bearing capacity of the pipe was not influenced by the pipe length
in the fourth yield criterion. The simulation values showed minor variations with changes
in pipe length but were generally stable. The curve fluctuations when the pipe was shorter
were affected by the boundary conditions.

When the wall thickness and diameter of a PVC pipe increased, its axial bearing
capacity also increased, and the two were approximately linearly related. When the wall
thickness of the PVC pipe increased from 4.4 mm to 22.3 mm, its bearing capacity rose
from 244.93 kN to 1264.49 kN. For every 100 mm increase in the pipe diameter, the bearing
capacity increased by about 300 kN. The bearing capacity of pipes under axial uniform
force showed strong consistency with the results from yield theory under Method A.
Combined with the observed deformation patterns under axial pressure, it mainly reflected
the nonlinearity of the material. The simulation results for all three scenarios aligned well
with the theoretical values, which also showed the accuracy of the simulation in this paper.
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Table 4. Effects of pipe length, diameter, and wall thickness on simulated and theoretical values.

Simulation Value (kN) Theoretical Value (kN) Deviation (%)

Length (m)

0.6 676.4 683.1 0.98
0.9 685.9 683.1 0.41
1.2 675.6 683.1 1.09
2.0 676.2 683.1 1.01
3.0 674.3 683.1 1.30

Diameter (mm)

223.6 676.4 683.09 0.98
300 892.26 929.49 4.00
400 1172.87 1252.01 6.32
500 1527.97 1547.52 1.26
600 1787.63 1897.04 5.77

Wall thickness (mm)

4.48 244.93 267.84 8.55
5.59 320.36 333.09 3.82
7.45 404 440.13 8.21
8.94 514 524.51 2.00

11.95 676.4 683.09 0.98
14.91 866.96 850.45 1.90
22.36 1264.49 1229.86 2.74
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3.2. Method B Analysis

Elastic theory analysis was conducted on the buckling model. A force was applied to
the reference point of the hinged end, and the concentrated force along the axial direction
of the pipe was used as the axial uniform force. The length and wall thickness of the
pipe were varied. The buckling modes for pipes with L/D ≤ 6, 6 < L/D ≤ 8.5, and
L/D > 8.5 are shown in Figure 7. The first mode buckling values under uniform axial
load for different sizes of PVC pipes are presented in Table 5. As shown in Figure 7,
as the length–diameter ratio increased, the buckling mode of the pipe transitioned from
symmetric buckling to anti-symmetric buckling and ultimately to the overall Euler buckling
pattern. The number of radial and circumferential waves on the pipe also decreased with
an increasing length–diameter ratio.
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Figure 7. Buckling modes of different lengths: (a) 0.3 m; (b) 0.9 m; (c) 1.6 m; (d) 2 m.

Table 5. Elastic buckling values under axial uniform force (kN).

t (mm)
L (m)

0.3 0.6 1.2 2.0 3.0 7.0

5.59 351.62 341.96 312.41 265.46 148.28 26.89
7.45 612.51 573.59 523.37 409.68 194.41 31
8.94 855.42 804.56 700.95 485.33 230.21 36.65
11.8 1485.95 1421 1138.59 624.64 296.12 47.02

14.91 2274.79 2004.92 1716.59 767.41 363.65 57.60
22.36 4575.95 3892.12 3486.38 1073.37 508.47 80.08

The curve of the elastic buckling load for PVC pipes with different lengths as a function
of the diameter–thickness (D/t) ratio is shown in Figure 8a. The curve showing the elastic
buckling load for PVC pipes with different wall thicknesses as a function of the length–
diameter ratio is plotted in Figure 8b. The buckling load for PVC pipes of various lengths
decreased as the D/t ratio increased, and when the D/t ratio was low, the buckling load
for shorter PVC pipes was significantly higher than that of longer pipes. When the D/t
ratio was 10, the buckling load for a 0.3 m long PVC pipe was about 4575 kN, which
is approximately 57 times the buckling load of a 7 m long PVC pipe. As the D/t ratio
increased, the effect of length on the buckling load of PVC pipes gradually diminished,
eventually tending to be consistent.
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As seen in Figure 8b, the elastic buckling load of the pipe is inversely correlated
with the length–diameter (L/D) ratio. At an L/D ratio of 1.34, the wall thickness had the
greatest impact on the buckling load. At this ratio, the buckling load for a wall thickness of
22.36 mm was approximately 14.6 times that for a wall thickness of 5.59 mm. However, as
the L/D ratio increased, the buckling loads for PVC pipes with different wall thicknesses
gradually decreased and converged. The variations in buckling load across different L/D
ratios demonstrated a more staged behavior, influenced by the buckling modes.

The comparison of elastic buckling values for PVC pipes under axial uniform force
with the short pipe theory is presented in Figure 9a. When the L/D ratio was low, the
buckling load of the pipe was close to the results calculated using the short pipe theory.
However, this consistency gradually diminished as the L/D ratio increased. When the L/D
ratio exceeded 6, a significant deviation occurred, indicating that the short pipe theory was
no longer suitable for calculating the buckling load of PVC pipes.
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Figure 9. Comparison of finite element results with theoretical values: (a) short pipe theory; (b) long
pipe theory.

Figure 9b plots a comparison between the elastic buckling loads for PVC pipes with
an L/D ratio greater than 8.5 and the long pipe theoretical formula. As shown in Figure 9b,
when L/D > 8.5, the results for elastic buckling load aligned well with the long pipe
theoretical formula. Consequently, under axial uniform force, buckling loads were close to
the short pipe theoretical formula when L/D was approximately 6 and converged toward
the long pipe theoretical formula when L/D was around 8.5.

The results reflect elastic bearing capacity; the post-buckling stage was not considered.
The first buckling mode was introduced into the pipe model as an initial imperfection to
analyze post-buckling. The first-order axial buckling mode was scaled by a certain factor
and then applied to the structure as an initial defect, with the defect size not exceeding 1%
of the pipe’s diameter. The ultimate axial bearing capacity for PVC pipe of different lengths
and wall thicknesses under uniform axial loading is listed in Table 6.

Table 6. Ultimate bearing capacity of PVC pipe under axial uniform load.

t (mm)
L (m)

0.3 0.6 1.2 2.0 3.0 7.0

5.59 173.46 150.02 173.49 209.23 144.40 23.60
7.45 297.17 309.7 383.92 366.42 191.98 30.89
8.94 410.43 420.54 489.19 444.15 228.78 35.63
11.8 633.33 635.78 681.99 590.37 296.35 46.12

14.91 856.82 889.27 887.28 726.01 365.77 56.93
22.36 1364.97 1367.53 1378.56 1044.29 511.73 80
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Figure 10a,b display the variation in the ultimate bearing capacity of PVC pipes under
axial uniform force as a function of the L/D ratio and D/t ratio. The ultimate bearing
capacity showed a stepped pattern of variation as the L/D ratio increased. The ultimate
bearing capacity remained relatively constant with only slight fluctuations at L/D = 6.
This is because deformations in the model are more likely to be influenced by boundary
conditions at lower L/D ratios. However, when the L/D ratio was greater than 6, the
ultimate bearing capacity gradually decreased as the L/D ratio increased. When the L/D
ratio became sufficiently large, the ultimate bearing capacity of PVC pipes was no longer
affected by wall thickness. The ultimate bearing capacity for PVC pipes with different wall
thicknesses tended to decrease and eventually converge to similar values.
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As can be seen from Figure 10b, the ultimate bearing capacity of PVC pipes gradually
decreased as D/t increased. The ultimate bearing capacity curves of the PVC pipes with
lengths of 0.3 m and 0.6 m were almost identical, and shorter pipes are more easily affected
by the wall thickness ratio. For pipes with lengths of 0.3 m and 0.6 m, as the D/t ratio
increased from 10 to 40, the ultimate bearing capacity decreased from 1364 kN to 173 kN—a
reduction of about 1191 kN. In contrast, for a 7 m-long PVC pipe, the ultimate bearing
capacity decreased from 80 kN to 23.6 kN as the D/t ratio increased from 10 to 40. This
indicates that shorter pipes are significantly more affected by changes in the D/t ratio,
whereas longer pipes are less influenced by these variations.

The results from Method A and Method B were compared, as shown in Figure 11. The
ultimate bearing capacity of PVC pipes under axial uniform force was close to the results
from Method A when the L/D ratio was less than 6. However, the difference between the
ultimate bearing capacity and Method A’s results increased as the L/D ratio exceeded 6.
When the L/D ratio was less than 6, the ultimate bearing capacity of the pipe was primarily
determined by the material’s yield strength. When the L/D ratio was greater than 6, the
buckling failure of the pipe was mainly governed by its axial buckling load. Zhen [14]
studied the influence of the slenderness ratio of the steel pipe jacking on the critical buckling
load and found that there is a critical slenderness ratio, which causes local buckling and
global buckling of the steel pipe jacking. When the slenderness ratio was less than 37, local
buckling occurred in the steel pipe jacking, and the critical bearing capacity was determined
by the buckling load. The length of PVC pipe used in pipe jacking is shorter than that of
steel pipe jacking, and the critical slenderness ratio of PVC pipe jacking is 6.
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To compare the critical values of elastic instability with those of elastoplastic instability,
the elastic buckling values from Table 5 were divided by the corresponding ultimate bearing
capacity values from Table 6 to derive Table 7. As can be seen in Table 7, as the length of
the pipe increased, the elastic buckling load for PVC pipe jacking gradually approached
the ultimate bearing capacity under axial uniform force. When the length reached 2 m, the
elastic buckling load and the ultimate bearing capacity were nearly identical. Considering
the comparison between the elastic buckling results and the long pipe theory formula, it
can be found that the buckling load at this time should also approach the result of the Euler
compression rod theory formula.

Table 7. The ratio of elastic buckling load to ultimate bearing capacity.

t (mm)
L (m)

0.3 0.6 1.2 2.0 3.0 7.0

5.59 0.49 0.44 0.56 0.79 0.97 0.88
7.45 0.49 0.54 0.73 0.89 0.99 1.00
8.94 0.48 0.52 0.70 0.92 0.99 0.97
11.8 0.43 0.45 0.60 0.95 1.00 0.98

14.91 0.38 0.44 0.52 0.95 1.01 0.98
22.36 0.30 0.35 0.40 0.97 1.01 1.00

4. Results under Eccentric Load

The axis deviation caused by uneven softness and improper correction of the stratum
will cause the pipe to be pressed by the eccentric axis during the pipe-jacking construction.
Currently, the pipe is unevenly stressed, the stability of the pipe is often reduced accordingly,
and the safety of the pipe jacking structure is greatly affected. To investigate the stability of
PVC pipes under eccentric axial pressure, two scenarios were analyzed in this paper:

a. Full-section radial triangular load with an eccentricity of r/2, as shown in Figure 12a,
hereinafter referred to as L1;

b. Half-section uniformly distributed load with an eccentricity of 2r/π, as shown in
Figure 12b, hereinafter referred to as L2.
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Figure 12. Schematic diagram of two types of eccentric loads: (a) L1 load; (b) L2 load.

4.1. Buckling Load of PVC Pipe

The PVC pipes were subjected to boundary conditions with one end fixed and the
other hinged in the eccentric axial pressure model. Two pressurization methods were
adopted: full-section radial triangular load (L1) and half-section uniformly distributed load
(L2). The buckling modes for these two eccentric loading conditions of different lengths
and different wall thicknesses are shown in Figures 13 and 14, respectively. The buckling
modes for 3 m-long PVC pipes under the two different loading conditions are shown in
Figure 15a and 15b, respectively.
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Under the two eccentric loading conditions, the buckling modes of the pipes transi-
tioned from localized failure in short pipes to an Euler buckling pattern in longer pipes as
the L/D ratio increased. The number of circumferential waves also decreased in shorter
pipes, and the wave peaks shifted toward the top and bottom ends of the pipe. For longer
pipes, the buckling modes under both eccentric loading conditions were nearly identical
to those under axial uniform force. It indicates that in this failure pattern, the impact
of wall thickness on the critical buckling load can be amplified, while the impact of the
length–diameter ratio may be reduced.
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Figure 15. Buckling mode of 3 m pipe: (a) L1 load (b) L2 load.

The pipe length and thickness were changed, and the curves showing how the buckling
values of PVC pipes changed with the D/t ratio and L/D ratio under two different loading
conditions are depicted in Figure 16a and 16b, respectively. As seen in Figure 16a, the elastic
buckling values gradually decreased with increasing D/t and L/D ratios. Additionally,
the decrease in elastic buckling as the L/D ratio increased appears to be more staged. For
the same diameter–thickness ratio, shorter pipes often have higher yield loads, but this
trend diminished as the D/t ratio increased. At a D/t ratio of 10, the buckling load of a
0.3 m PVC pipe was 3059 kN, while the buckling load of a 7 m PVC pipe was only 80 kN,
making the shorter pipe’s buckling load 38 times greater. When the D/t ratio increased to
40, the difference was reduced to just 9 times. It indicates that as the pipe wall thickness
decreases beyond a certain point, the influence of the length on the pipe buckling load will
be gradually weakened.
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It can be observed from Figure 16b that under the action of eccentric load L1, the
buckling load exhibits fluctuating variations when the L/D ratio is less than 6, with more
significant fluctuations for PVC pipes with greater wall thickness. When the L/D ratio was
greater than 6, the buckling load gradually decreased as the L/D ratio increased, eventually
approaching zero. The main reason for this phenomenon is that the buckling modes of
PVC pipes vary significantly with changes in the L/D ratio, and the critical buckling load
will be affected.
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Figure 17a,b exhibit the buckling load changing curves with the D/t ratio and L/D
ratio under L2 load, respectively. The overall pattern was similar to that observed under
the L1 load: the buckling load decreased with an increase in the D/t ratio, and the changes
concerning the L/D ratio exhibited a phased pattern, with the buckling load gradually
decreasing as the L/D ratio increased, particularly when L/D exceeded 6.
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However, a notable difference is that the buckling loads obtained with the L2 loading
form were significantly lower than those from the L1 loading form, with the maximum
buckling loads differing by up to 900 kN. Furthermore, when the L/D ratio was 6, the
buckling load under the L2 load first increased and then decreased, whereas under the L1
load, it first decreased and then increased. This indicates that under eccentric axial force
when the pipe is shorter, the mode and magnitude of failure are strongly influenced by the
type of loading and the point of load application.

4.2. Ultimate Bearing Capacity Analysis

The ultimate bearing capacity was obtained by introducing the previously calculated
elastic buckling load results into the elastoplastic buckling analysis in the same manner.
The computed results are shown in Table 8. The curves depicting the ultimate bearing
capacity of PVC pipe jacking under the two eccentric loadings as the length–diameter ratio
and diameter–thickness ratio are shown in Figures 18 and 19, respectively.

Table 8. Ultimate bearing capacity of PVC pipe under two eccentric loads.

Eccentric
Load Form t (mm)

L (m)
0.3 0.6 1.2 2.0 3.0 7.0

L1

5.59 96.68 75.56 85.44 74.82 75.00 22.05
7.45 171.81 121.50 140.74 118.97 112.90 30.49
8.94 232.34 158.79 205.29 155.01 141.40 35.31
11.8 334.60 253.97 317.27 233.80 208.95 46.91

14.91 459.54 392.48 436.82 342.94 278.25 57.27
22.36 789.55 804.28 717.45 640.23 392.23 79.13

L2

5.59 40.61 41.43 39.75 40.53 38.54 23.38
7.45 65.64 67.33 64.57 66.40 68.64 30.82
8.94 89.14 91.63 86.64 90.54 88.18 36.59
11.8 135.84 140.69 137.45 134.11 127.10 47.13

14.91 187.95 183.76 163.29 174.34 167.92 57.86
22.36 272.44 292.72 228.76 275.72 275.33 81.32
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As plotted in Figure 18a, the ultimate bearing capacity of PVC pipes gradually de-
creased as the D/t ratio increased, with shorter pipes being more significantly affected
by changes in D/t. As D/t increased from 10 to 40, the ultimate bearing capacity of a
0.3 m-long pipe decreased by about 700 kN. It gradually decreased, and finally the ultimate
bearing capacity tended to be equal. When the pipe length was between 0.3 m and 2 m, the
ultimate bearing capacity of PVC pipes was not much different.

As can be seen from Figure 18b, under the L1 loading condition, the ultimate bearing
capacity exhibited a staged relationship with wall thickness when the L/D ratio was less
than 6. When the wall thickness was less than or equal to 14.91 mm, the numerical results
first decreased and then increased with increasing L/D ratio. However, when the wall
thickness was greater than 22 mm, the trend was reversed: the ultimate bearing capacity
first increased and then decreased with the increasing L/D ratio. When the L/D ratio
exceeded 6, the ultimate bearing capacity generally decreased as the L/D ratio increased.

Figure 19 displays the variation of the ultimate bearing capacity with the diameter–
thickness ratio and length–diameter ratio under L2 eccentric load. The overall trend of
the curves was consistent with that under the L1 loading condition—both decreased as
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D/t and L/D increased. The ultimate bearing capacity under L2 remained at roughly the
same level when L/D was greater than 14, but when L/D = 6 the ultimate bearing capacity
decreased significantly, which was also mainly controlled by the change in buckling mode.
The maximum ultimate bearing capacity for the pipe was only about 300 kN under the L2
loading condition, significantly lower than that under L1. Therefore, with the L2 type of
eccentric loading, failure of the pipe may occur more readily, which should be noted.

To study the impact of eccentricity on the ultimate load capacity of pipes, 0.3 m-, 3 m-,
and 7 m-long pipes were selected, and the ultimate bearing capacities under L1 and L2
loads were compared with those under axial uniform force. As depicted in the figure,
when the pipe length was 0.3 m and 3 m, with increasing wall thickness, the ratio of the
ultimate bearing capacity under L1 and L2 loads to that under axial uniform force tended
to stabilize. It can be seen from Figure 20 that with an eccentricity of 0.5, corresponding to
the L1 load, the ultimate bearing capacity was about 55% of that under axial uniform force.
With an eccentricity of 0.6366, representing the L2 load, the ultimate bearing capacity was
approximately 22% of the capacity under axial uniform force.
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Figure 20. The ratio of ultimate bearing capacity under eccentric load and uniform load for different
pipe lengths.

When the length of the pipe increased to 3 m, the proportion of L1 and L2 to the
uniform load increased from 55% to about 80% and 22% to about 50%, respectively, both
of which are significantly improved. It was found that with the increase of the L/D ratio,
the influence of the load distribution form on the ultimate bearing capacity gradually
decreased, and the ultimate bearing capacity under the two eccentric loads continued to
rise. Moreover, at lower L/D ratios, loads with higher eccentricity led to a greater reduction
in the ultimate bearing capacity of the pipes. However, when the pipe length increased
to 7 m, the ratio of the ultimate bearing capacity of the two eccentric loads to the uniform
axial compression was almost the same, both of which were about 100%, indicating that
the ultimate bearing capacity under L1 and L2 loads was almost the same as that under
uniform axial compression.

The relationship between the bearing capacity under two types of eccentric loading
and the length–diameter ratio was compared. The greater impact of initial defects when
the wall thickness was smaller was considered, and a thickness of t = 22.36 mm was chosen.
The comparison results are shown in Figure 21. For L/D ratios ≤ 6, the buckling mode
exhibited localized failure, and the bearing capacity should primarily be influenced by
the failure mode and material strength. The ratios of L1 and L2 to the uniform load were
maximized at around 22% and 60%, respectively.
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At L/D greater than 6, the buckling mode of the pipe gradually transitioned to Euler
buckling with increasing length–diameter ratio. However, the development of the buckling
mode under uniform loading and different eccentric loadings varied during the process
of increasing the length–diameter ratio. Overall, the ratio of the ultimate bearing capacity
under both types of eccentric loading to the ultimate bearing capacity under uniform
loading increased continuously with an increasing L/D ratio. When L/D reached 30, it
tended to be consistent with the ultimate bearing capacity under uniform loading.

5. Discussion

When PVC pipe jacking is subjected to axial pressure, material failure may occur first
or buckling may occur first according to the numerical analysis above. Under axial uniform
force when L/D ≤ 6, PVC pipes are prone to experience yield failure first, the magnitude
of which is determined by the yield strength of the pipe material. When L/D is greater
than 6, the pipe is likely to experience buckling instability first, the magnitude of which is
determined by the axial buckling value of the structure.

When L/D is less than or equal to 6, the ultimate bearing capacity is Fd = Apσu

Fp − F0 ≤ Fd = Apσu (5)

The allowable jacking distance L is calculated according to Equation (6).

L ≤
Apσu

µ(N + W)
(6)

In the formula, Fp is the allowed thrust force; F0 is the resistance faced; Ap is the pipe
cross-sectional area, m2; σu is the yield strength of the pipe material, Pa; µ is the friction
coefficient; N is the pipe pressure; and W is the pipe gravity.

In the range of 6 < L/D ≤ 8.5, the ultimate bearing capacity of the pipe is less than the
theoretical value of full-section yielding. The finite element analysis method can be used to
analyze its buckling type and determine its critical buckling load to accurately calculate its
ultimate bearing capacity.

When L/D is greater than 8.5, the ultimate bearing capacity depends on its axial
buckling value. At this point, the ultimate bearing capacity of the pipe is close to the elastic
buckling value, thus exhibiting good consistency with the Euler formula for long pipes.

Fp − F0 ≤ Fd =
π3ED3t

8(µ0l)2 (7)
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L ≤ π3ED3t

8µ(N + W)(µ0l)2 (8)

According to the CECS-2020 [31], the maximum allowable jacking force of the dowel
surface for pipe jacking is calculated according to the following Formula (9). In the design
process of pipe jacking engineering, it is slightly conservative to select the value of pipe–soil
friction resistance according to the current standard specification. The relationship between
the change of the length–diameter ratio and the buckling of the pipeline is considered
in this paper. The allowable jacking force and jacking distance derived from different
length–diameter ratios are more applicable.

Fd = Kd
fp Ap

γd × 103 (9)

fp =
fp,k

γc
(10)

In the formula, Kd is the eccentric compression allowing the jacking force reduction
factor. γd is the allowable jacking force comprehensive coefficient, and the value of the PVC
pipe is 1.11. fp,k is the standard value of axial compressive strength of the pipe, and the
value of the PVC pipe is 66 MPa. γc is the partial coefficient of axial compressive strength,
and the value of the PVC pipe is 1.2.

Under the eccentric axial pressure L1, the short pipe exhibits asymmetric local buckling
along the axial direction. Based on the comparative analysis with axial uniform force, the
ratio of the ultimate bearing capacity of L1 to that of axial uniform force fluctuates around a
certain value at L/D ≤ 6, with this ratio varying with the wall thickness, generally around
50%. For 6 < L/D < 30, the ultimate bearing capacity of L1 gradually approaches that
of axial uniform force with the increase of L/D. For accurate calculation, finite element
analysis methods can be employed. When 30 ≤ L/D, the ultimate bearing capacity of L1
approaches that of axial uniform force, calculated according to Equation (7).

Under the eccentric axial pressure L2, when L/D ≤ 14, the ultimate bearing capacity
of the pipe fluctuates around a certain value as a whole; when 14 < L/D < 30, the ultimate
bearing capacity under L2 increases with the length–diameter ratio. The increase gradually
approaches the ultimate bearing capacity under axial uniform force. If you want to calculate
accurately, you can use the finite element analysis method; when 30 ≤ L/D, the ultimate
bearing capacity is calculated using Equation (7).

PVC pipes typically have outer diameters ranging from 200 to 600 mm and lengths of
around 1 m in micro tunneling. When only the axial uniform force is considered, when the
pipe diameter is greater than 333 mm, the yield strength of the pipe is mainly considered.
However, for pipe diameters ranging from 200 to 333 mm, a specific analysis needs to be
conducted in conjunction with the pipe length.

6. Conclusions

The failure forms and buckling modes of PVC pipes under uniform and eccentric
loads were investigated, and the buckling load and ultimate bearing capacity at different
length–diameter ratios and diameter-thickness ratios were obtained through theoretical
research and numerical simulation. The key conclusions were drawn as follows:

(a) The elastic buckling load of PVC pipes decreases continuously with an increasing
length–diameter ratio and diameter–thickness ratio under axial uniform force. It closely
approximates the short pipe theory formula when L/D is less than or equal to 6 and tends to
approach the long pipe theory formula when L/D exceeds 8.5. The elastic-plastic buckling
is calculated by introducing an initial defect, and the ultimate bearing capacity of the pipe
is obtained. When the L/D ratio is less than or equal to 6, the ultimate bearing capacity of
the pipe tends to approach the theoretical yield failure value. When L/D is greater than
6, the pipe buckles and becomes unstable, and its magnitude is determined by the axial
buckling value of the structure.
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(b) The mode of failure and the magnitude of the buckling load of the pipe are
significantly influenced by the manner and location of the loading under eccentric axial
loading. Short pipes exhibit asymmetric local failures under eccentric loading, gradually
transitioning to Euler buckling modes as the length–diameter ratio increases. The buckling
load of the pipe under eccentric axial loading is notably lower than that under axial uniform
force. However, as the length–diameter ratio increases, the difference between the two
decreases, indicating that the influence of the loading mode and distribution diminishes
with an increasing length–diameter ratio.

(c) Based on the consideration of the load capacity of a single pipe and the relationship
between the ultimate bearing capacity of the pipe under different L/D ratios and the fourth
yield criterion and Euler’s formula, the calculation methods of allowable jacking force and
single allowable jacking distance is derived.

(d) To prevent PVC pipes from buckling during jacking, when the length–diameter
ratio is less than 6, priority should be given to the yield failure of the pipe. When the
length–diameter ratio is greater than 6, priority should be given to the axial buckling value
of the pipe under a certain length–diameter ratio of the pipe. The increase in wall thickness
can increase the strength failure value and the axial buckling failure value of the pipe.
However, it also increases the production cost of the pipe. Therefore, the wall thickness of
the pipe should be determined based on the permissible jacking force.

However, there are still limitations in the FEM and results that can be further investi-
gated. In the simulation, the soil–structure interaction (SSI) is not considered. The frictional
resistance is derived from soil pressure acting on the pipe and the shear behavior of the
SSI. The uncertainty of soil parameters has a significant effect on the structure [32]. The
frictional resistance is also affected by soil properties and tends to be higher in dense or
cohesive soils. The excessive frictional resistance induced by soil pressure increases the
total jacking force and decreases the allowable jacking distance in a practical jacking drive
since the critical buckling load decreases with the increase in pipe length, and the pipe is
more prone to buckle under the action of jacking force. Meanwhile, the pipe jacking project
is also affected by soil deformation [33,34]. The settlement of the pipe induced by the soil
movement in long-distance pipe jacking will cause a deviation of the pipe axis, resulting in
additional eccentricity and reduced critical buckling load and ultimate bearing capacity.
Furthermore, the earth pressure generated by the SSI causes extrusion and contact with the
pipes and may lead to the deformation of the pipe, resulting in a decrease in the buckling
confining pressure, and the buckling of the pipe will occur under a relatively small jacking
force [16].
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