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Lifetime prediction of epoxy coating using
convolutional neural networks and post
processing image recognition methods
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The rapid failure of organic coatings in deep-sea environments complicates accurate lifetime
prediction. Given the rapid cracking characteristic on the coating surface in this environment, a
comprehensive “performance-structure” failure model was established. Initially, a targeted image
recognition approach containing convolutional neural network (CNN) and post-processing was
constructed for the crack area detection. An overall precision of 82.81% demonstrated the network’s
good accuracy. The length distribution and the statistical evolution of crackswere extracted fromSEM
images to obtain the kinetic equation of the cracks related to coating structure degradation. In
addition, the kinetics ofwater diffusion and coating adhesionwere examined, as they represent critical
parameters of coating performance. Based on this achievement, a failure model incorporating three
dominant factors was integrated by the gray relational analysis method. The average prediction error
of the model was 2.60%, which lays the groundwork for developing image-based methods to predict
coating life.

The problem of deep-sea corrosion in metallic structural materials is a
significant obstacle to the exploration and development of deep-sea
resources1–3.Organic anti-corrosion coatings are one of themost commonly
used protectivemeasures inmarine environments4,5. However, the complex
nature of the deep-sea environment can lead to premature coating failure
and reduced lifetime6–8. Since organic coatings are directly exposed to sea-
water, rapid degradationof the coatings can result in premature corrosionof
marine structuralmaterials. Therefore, accurately predicting coating service
life based on the degradation behavior of organic coatings in deep-sea
environments is essential for their development, offering significant
scientific value.

Methods for predicting the service life of coatings or other materials
can generally be categorized into two types, experience-based prediction
methods9–11 and data-driven prediction methods12–14. Experience-based
models typically use accelerated experiments to simulate the specific service
environment of materials and establish empirical equations with key
parameters to predict the lifespan of coatings15,16. These methods can make
quite accurate predictions under certain simple conditions.However, due to
the complexity of material stress states and service environments, con-
structing realistic physical models is often very challenging. On the other
hand, data-driven methods utilize collected monitoring data to predict
lifespan by analyzing the relationship between data and material char-
acteristics, without the need for complex physical models17,18. However, this

approach requires a high quantity and quality of data, which sometimes
limits its widespread application.

Compared to shallow-water environments, the degradation behavior
of coatings in deep-sea environments undergoes significant changes4,19–22.
Our previous research has indicated that the synergistic effects of pressure
and fluid in deep-sea environments lead to rapid cracking on the surface of
coatings6. The cracks progressively expand and interconnect over time,
causing the detachment of polymer fragments from the coating surface and
ultimately accelerating coating failure. This particular failure formunder the
deep-sea environment is directly correlated with changes in the micro-
structure of coating. Unfortunately, certain performance tests may not
promptly demonstrate these changes during the early stages of failure,
which presents challenges for precise predictions based on testing perfor-
mance parameters. Therefore, the information of degradation of coating
structure, achieved by capturing the evolution of their morphology images,
plays a pivotal role in coating detection and lifetime prediction.

Image recognition technology, also known as machine vision analysis,
has emerged as a promising tool for advancing research and development in
various fields, including materials science23,24. Image recognition has the
potential to streamline and enhance material characterization25,26, quality
control27, and manufacturing processes28,29. By harnessing artificial intelli-
gence and computer vision algorithms, this technology offers numerous
possibilities for accelerating scientific discoveries, optimizing material
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properties, and improving efficiency in materials-related industries30,31. In
the field of corrosion research, image recognition also proves to be an
efficient method for analyzing corrosion patterns and assessing the corro-
sion condition ofmaterials32–35. Silva et al. present 2D images produced by a
confocal microscope of corrosion on copper alloy surfaces36. By calculating
various parameters from these images, discernible trends in corrosion
information can be obtained37. Feliciano et al. proposed the use of texture
analysis for non-destructive surface corrosion monitoring in steel
structures34. The authors utilize image processing algorithms to analyze
corrosion patterns and assess the severity of corrosion. These studies pro-
vide insights into the application of image recognition technology in cor-
rosion research, showcasing its potential for automated corrosion analysis
and detection under complex influencing factors. Given the evident phe-
nomenon of rapid cracking for organic coatings in deep-sea environment6,
we believe that the evolution of coating surface morphology might suggest
an efficient strategy for developing advanced coating detection and even
lifetime prediction methods. Since the features of the pixel points in the
organic coating image are similar acrossmost areas except for cracks in a few
regions, applying the current approach is challenging for organic coatings.
Appropriate methods must be established to deal effectively with the
characteristics of the coating images.

Herein, based on the characteristics observed in coating images,
the information on structure degradation was integrated with coating
performance data to establish a new “performance-structure” failure
model, enabling accurate prediction of coating lifetime. First, image
recognition technology incorporating convolutional neural networks
(CNN) and post-processing was developed to analyze indistinguishable
microscopic morphology images of epoxy mica coatings under simu-
lated dynamic deep-sea environments. Statistical information on crack
propagation was quantitatively analyzed. The results indicate that the
degradation behavior was divided into three stages according to the
dominant mechanisms of crack initiation and crack growth. Second,
the kinetics of the crack length was used as a feature parameter of
coating structure, to combine with the parameters of coating proper-
ties. Finally, the quantitative relationship between these parameters and
the service life of the coatingwas obtained by the gray relational analysis
method. This work lays the foundation for developing image-based life
prediction methods by establishing a framework for analyzing the
microstructural features of coatings.

Results
Morphologyevolution and image recognition results of theepoxy
coatings
The microscopic morphology of the epoxy mica coating surface after ser-
ving in the deep-sea pressure-fluid environment was observed, and the
evolution of the cracks on the coating is taken as one of the structure
features, giving that the crack propagation is directly related to the coating
failure. As shown in Fig. 1a, the degradation of the epoxy mica coating
surface increases as the service time increases. The coating surface experi-
ences surface cracking failure as the main failure state. The phenomenon of
cracking is often initiated from the edge of the pore at the coating surface or
the mica filler/resin interface (see Fig. 1b). Subsequently, crack propagation
near the pores/fillers was observed approximately at 72 h, and the propa-
gation paths appeared to be non-directional. This evidence for deterioration
is obviously responsible for the protective performance of the coating. The
cracks are gradually connected to a large network at 96 h. After 120 h of
service, cracks appear on the coating surface in the formof amesh pattern. It
suggests that the coating is experiencing significant degradation and may
not provide effective protection to the underlying substrate. The initiation
and propagation of cracks on the coating surface are important character-
istics of the coating failure under deep-sea pressure-fluid condition.

A large number of SEM photographs of the coating surface (×500
magnification) after 12, 24, 48, 72, 96, and 120 h immersion were taken.
After careful selection, 1815 valid images were acquired and used to create a
preliminary image database for further research. The number of images for
each timepoint is provided inTable 1. Someof the imagedatabase of surface
morphology of epoxy coatings is shown in Supplementary Fig. 1. Subse-
quently, 80% of the samples were randomly selected as the training set and
20% as the testing set for each time point.

As a type of deep learning model, CNNs are specifically designed to
process data that has a known grid-like topology, which are particularly
effective for tasks like image recognition. The aim of image recognition in
this experiment is to handle the coating photoswithout clear characteristics,
enabling accurate and effective extraction of corresponding statistical
information of cracks from the image database. Although CNNs have been
widely applied in recognizingmetal corrosion, there is currently no suitable
CNN setup available for reference. Images of organic coatings tend to have
indistinct color differences and blurred crack edges since the conductivity of
organic coatings is poor. In addition, the uncertainty in the length, direction,

Fig. 1 | Morphology evolution of the coating sur-
face immersing in the simulated deep-sea envir-
onment. aTypical images of the coatings at different
time periods with distinctive crack characteristics.
Internal stress is rapidly released through cracking,
and these cracks quickly propagate and interconnect
to form a vast network. The interconnected cracks
ultimately result in premature failure of the coating.
b Enlarged images of coating surfaces at 24 h and
96 h. The initial state and evolution of the cracking
can be observed clearly.

Table 1 | Sample sizes of SEM images at different time and the classification accuracy by CNN

Time/h 12 24 48 72 96 120

Sample size 261 388 294 179 354 339

Classification accuracy Precision 0.8008 0.8222 0.8333 0.8715 0.8503 0.8053

Recall 0.7741 0.7687 0.8333 0.8083 0.9556 0.8323
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and shape of cracks complicates the detection of crack areas. Therefore, a
targeted approach containing CNNand post-processingwas established for
the crack area detection of coating surface. To accurately identify these
cracks, 640 × 640 pixel photos of RGB channels were cropped and used as
the input layer. A detailed setup for CNN and corresponding hyperpara-
meters can be found in section of “Methods”.

The image recognition results and evaluation metric are shown in
Fig. 2. First, a typical raw image at 48 h with many indiscernible cracks was
takenas an example (Fig. 2a), and its identificationand location results of the
suspected crack area using the CNNare shown in Fig. 2b. In the figure, each
blue box represents the identification of a crack (defining the category of “0”
represents the crack). The accompanying number denotes the level of
classification confidence. It can be seen that the values for the vast majority
of cracks are close to 1, indicating a high level of recognition confidence.
After thedetectionof crack areas, a seriesof post-processingwereperformed
to extract the crack skeletons, which provides a clear visualization of the

crack paths (Fig. 2c). The detailed processes are provided in the “Methods”
section.

To further evaluate and understand the model performance, receiver
operating characteristic (ROC) curves and confusion matrix of the images
are provided in Fig. 2d, e. All the ROC curves close to the upper left corner
and are above the diagonal line, indicating a good prediction performance
with high sensitivity and low false positive rate (FPR). From the confusion
matrix results, the images have been classified well. The precision and recall
metrics are shown in Table 1, and the corresponding formulas are given in
the sections. Precision emphasizes the correctness of recognition, which
indicates the proportion of examples classified as positive that are indeed
positive. The precision value for each time point exceeds 80%, and the
overall correctness of the model is 82.81%. Recall results also indicate that
most of the positive cases were captured by the model, as demonstrated in
Table 1. The results suggest that the model has a good classification accu-
racy. By utilizing the image recognition method above, crack length

Fig. 2 | Image recognition results for the surface of organic coatings servicing in
the simulated deep-sea environment. a A typical raw image at 48 h with many
indiscernible cracks. b Identification and location of the suspected crack area using

the convolutional neural network. c Extractable crack features after post-processing
of the image. d ROC curves of the images (class 0–class 5 represent 12, 24, 48, 72, 96,
and 120 h, respectively). e Confusion matrix of the images.
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distribution can be accurately obtained for further analysis, which is pro-
vided in the discussion section below.

Coating adhesion evolution and the kinetics fitted by GM
(1,1) model
The adhesion of the coating is a critical parameter for evaluating coating
performance, which is used to construct the comprehensive failuremodel in
the following section. Based on the macroscopic morphologies of the
coatings in service at different time in Fig. 3a–d, it can be seen that the
coating exhibited rapid blistering associated with a loss of coating adhesion.
Few corrosion products were observed within such a short service time in
this environment. The coating was severely damaged after 72 h of immer-
sion, which directly determined the failure of the coating. Figure 3e shows
the variations in the adhesion of the epoxy-mica coating in the deep-sea
environment. The decline in wet adhesion of the coatings can be found
during the entire test period. The values of the coating rapidly decreased
from 7.20MPa to 2.44MPa within 72 h, exhibiting a nonlinear varia-
tion trend.

Since adhesion degradation is an extremely complex process with
many uncertain influencing factors, it is difficult to study the mathe-
matical and prediction models. Gray System Theory (GST), a modern
mathematical method involved in the ambiguous systems was used to
study the kinetics of coating adhesion in this work. GST is suitable for the
ambiguous systems which have unclear structures or unexplained
principles and certain results. Herein, as the most widely used gray
prediction model, GM (1,1) model was applied to calculate the raw
adhesion data. Experiment data before 96 h was used for model training,
and the values at 96 h and 120 h were used for predicting. More

introduction and a detailed derivation of the model are provided in the
“Methods” sections of the text.

Equation (1) is the function formula of coating adhesion fitted by gray
GM (1, 1) model. The fitting curve and corresponding results are given in
Fig. 3e and Table 2. The observation in the figure reveals that the predict
values of GM (1, 1) models are in good agreement with the experimental
data. The average relative error (ARE) (Eq. 28) of the model is 6.37%,
suggesting that the fitted formula has a good reliability and can reflect the
trend of coating adhesion very well.

Xð0Þ
p ðtÞ ¼ 6:363eð�0:01245tÞ ð1Þ

where Xð0Þ
p ðtÞ is the adhesion of the coating at immersion time t, and

p represents the predicted value.

Water absorption kinetics of the coating
The transport of seawater in the coating is one of the factors that leads to the
failure of the coating. Thewater absorption kinetics of the coating can reflect
the changes in the internal defects of the coating and characterize the
infiltration resistance of the coating, so it is an important parameter in
evaluating the failure and destruction of the coating. Under deep-sea
pressure-fluid conditions, the transport of water in the coating no longer
conforms to the ideal Fickdiffusion behavior.ACase II absorption diffusion
behavior was used to fitted the data, which was accompanied by a con-
siderable amount of swelling. It suggests that the water absorption of the
coating is determined by the non-Fick diffusion caused by the structural
relaxation of the polymer. The corresponding water absorption equation
can be expressed as:

Qt ¼ Q1ð1� eð�btÞÞ ð2Þ

whereQt is thewater absorptionof the coating at immersion time t,Q∞ is the
maximumwater absorption and b is a constant. The value of bwas 0.03323
through the process of fitting. The fitting results are shown in Fig. 4 and
Table 3. It can be seen that themodel values are in good agreement with the
measured values, indicating that the water absorption kinetic equation at
this time can correctly reflect the change of the water absorption rate of the
coating with time in the coupled environment.

Discussion
The goal of image recognition is to consider crack length as a parameter
representing the structural evolution of the coating and to contribute to the
development of a life predictionmodel. Thus, the number of pixels occupied
by the highlightedpart in the imagewas calculated after imageprocessing, to
measure the length of the crack in the subsequent step.

The crack length distributions of the coating surface at different time
are shown in Fig. 5. The length distribution has a relatively large span, and
the concentrateddistribution area appears at 50–2000 pixels, indicating that
the degradation degrees of the coating at different time are uneven, and the

Fig. 3 | Evolution of the coating adhesion to themetal substrate. Themacroscopic
morphologies of the coating surface at a 0 h, b 24 h, c 48 h, d 72 h show a rapid
blistering phenomenon due to the loss of coating adhesion. e Curves of the
experimental data and the fitting results by GM (1, 1) model for coating adhesion in
the deep-sea environment.

Table 2 | The relative error between the fitting results and the
measured data for the wet adhesion of the coating

Immersion time/h Measured
value/MPa

Predict
value/MPa

Relative
error/%

12 5.21 5.48 −5.18

24 5.02 4.72 5.98

36 4.36 4.06 6.88

48 3.25 3.50 −7.69

60 3.10 3.02 2.58

72 2.44 2.60 −6.56

96 2.12 1.93 8.96

120 1.54 1.43 7.14
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crack length ismostly distributed between 50 and 2000 pixels. The statistical
values of the crack show that the standard deviation of the values is very
high, which could not well reflect the overall level of the estimated

population. Therefore, the cumulative frequency distribution function
(CDF) was introduced to calculate the histogram. The fitted cumulative
distribution function can effectively reduce the error caused by the sample
distribution. The CDF value (L50) corresponding to the cumulative dis-
tribution reaching 50%can effectively reflect the overall level of crack length.
Therefore, the value of L50 is selected to carry out the further study.

The values of L50 crack lengthwere logarithmically processed (logged),
and the logarithmic value with base 10 was returned (see Supplementary
Fig. 2). Based on the results above, the corresponding frequency distribution
histogramwas plotted in Fig. 6 to obtain the probability density distribution
function (PDF). The variation in cracks roughly went through three stages
with immersion time, according to the calculated peak area and peak
position at different stages, and the crack initiation and propagation were
quantitatively analyzed. For the first stage (12 h, 24 h, and 48 h), the fre-
quency distribution showed double-peak characteristics, suggesting that
crack initiation and propagation occurred simultaneously. In Fig. 6, the
smaller peak is defined as the crack initiation peak and is marked as P1, its
peak position is x1, and the corresponding peak area is S1; the larger peak is
defined as the crack propagation peak andmarked asP2, the peak position is
x2, and the corresponding peak area is S2. The distance between two peaks is
|x2−x1|. The integrated value from the start position to thefirst trough of the
probability distribution function is defined as the area of the crack initiation
peak, and the integrated value of the remaining part is the area of the crack
propagation peak. The sum of the areas of the two peaks is 1. The results of
the peak areas and the distance between the two peaks are given in Sup-
plementary Fig. 3, and the total calculation results are shown in Table 4.

From the above results, the area of P1 gradually increases from 12 to
48 h, and its peak position also gradually shifts to the right, indicating that
crack initiation is constantly in progress, and the initiated length gradually
increases. At the same time, the area of P2 gradually decreased, and the peak
position gradually shifted to the left; the distance between the two peaks
decreased from1.043 to 0.625, indicating that the crack gradually transitions
from the initiation stage to the propagation stage. The crack variation is
dominated by crack initiation at this stage.

The distribution of the crack exhibits unimodal characteristics from72
to 120 h. At 72 h, the horizontal axis of the peak is 3.004, which is at the
center of the sample distribution. It indicates that the crack initiation peak
and crack propagation peak merged into a single peak. At 96 h and 120 h,
the crack initiation peak disappears, and the cracks completely enter the

Table 3 | Fitting results of the water diffusion behavior and the
relative error

Immersion time/h Test value/% Fitting value/% Relative error/%

0 0 0 0

4 0.251 0.256 −1.80

20 0.943 0.997 −5.70

24 1.123 1.128 −0.47

48 1.653 1.636 1.00

72 1.84 1.865 −1.38

96 1.994 1.968 1.26

120 2.001 2.015 −0.68

Fig. 5 | Histogram of the crack length distribution of the epoxy coating at different time. a 12 h, b 24 h, c 48 h, d 72 h, e 96 h, and f 120 h.

Fig. 4 |Water absorption kinetics of the coating in the deep-sea environment.The
curve was fitted by Case II absorption equation.
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propagation stage. The horizontal axis of the propagation peak changes
from 3.803 to 3.967, and the peak position gradually shifts to the right with
time. This corresponds to the crack feature shown in Fig. 1.

Based on the above analysis, it can be considered that if the horizontal
axis corresponding to the distribution peak is less than 3.004, the actual
crack lengths are concentrated in the area less than 586.77 μm (1.72 pixels =
1μm).That is, crack initiationoccurs on the coating surface; if thehorizontal
axis is greater than 3.004, the actual crack lengths are concentrated in areas
greater than 586.77 μm, and the cracks propagated on the coating surface.
When the peak only appears at the position where the actual crack length is
greater than 586.77 μm, the crack variation is dominated by crack propa-
gation. The coating surface present a reticular characteristic of crackingwith
severe degradation. In contrast,When thepeak is observedonly at a position
corresponding to crack lengths of less than 586.77 μm, the variation in
cracks is dominated by crack initiation.

The kinetics of the crack length was then fitted to be part of the
comprehensive model. At each immersion time, the crack value of L50 was
converted to the actual crack length, and the dynamics of crack propagation
versus the service time t was constructed. It can effectively reflect the var-
iation pattern of the crack length on the coating surface versus time, and the
results are shown in Fig. 7. Through observation of the point distribution of
the value of L50 versus service time, it can be seen from the results that the
point distribution of the value of L50 versus service time roughly conforms
to the exponential distribution only except the value at 72 h. Therefore, the
fitted dynamics characteristic equation of crack propagation is:

Lt ¼ L0 þ AeðR0tÞ ð3Þ

where Lt represents the crack length in μm. The values of L0,A, andR0 were
559.16, 66.82, and 0.030, respectively. The equation can be used to represent

the crack variation characteristics of the coating surface cracks at the cor-
responding service time. The calculation results are shown in Table 5.

Based on the analyses above, the coating failure model can be deter-
mined by three dominant factors, including coating adhesion, water diffu-
sion, and crack length. The first two factors represent changes in coating
properties, and the length of cracks related to coating structure degradation.
Therefore, the quantitative relationships of service time changingwith these
dominant factors can be derived from the Eqs. 1–3, respectively:

tcrack ¼
ln Lt�L0

A

� �

R0

ð4Þ

tadhesion ¼ N
a

ln½Xð0Þð1Þ � u
a�ð1� eaÞ

Xð0Þ
p ðtÞ

þ t1 ð5Þ

tabsorption ¼
ln Q1�Qt

Q1

� �

�b
ð6Þ

where tcrack, tadhesion, and tabsorption represent the coating lifetime dominated
by coating crack degradation, adhesion loss, and water absorption,
respectively. In the Eq. 5, t1 is the initial time of the time series,N is the time
interval, a and u are coefficient obtained by fitting results.

Finally, the construction of performance-structure failure model was
performed. A comprehensive model combining coating properties and
coating structure degradation was developed as follows:

ttotal ¼ r1tcrack þ r2tadhesion þ r3tabsorption ¼ r1
ln Lt�L0

Að Þ
R0

� �

þ r2
N
a ln

Xð0Þ
ð1Þ�u

a

� �
ð1�eaÞ

Wt
þ T1

� �
þ r3

ln Q1�Qt
Q1

� 	
�b

� �
; r1 þ r2 þ r3 ¼ 1

ð7Þ
where r1, r2, and r3 are the corresponding weight factors. To determine the
weight factor for each variable, the gray correlation method was utilized,
which is a branch of gray system theory. In this method, the correlation
between the factors studied is found in a random factor sequence through
certain data processing from incomplete information to obtain the main

Fig. 6 | Histogram of the crack frequency distribution of the epoxy coating at different time (after taking the logarithm). a 12 h, b 24 h, c 48 h, d 72 h, e 96 h, and f 120 h.

Table 4 | Calculation results related to PDF of surface crack
length of the coating (12–48 h)

Time/h S1 S2 x1 x2 |x2−x1|

12 h 0.54 0.46 2.649 3.692 1.043

24 h 0.58 0.42 3.054 3.851 0.797

48 h 0.59 0.41 2.958 3.583 0.625
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affecting factors. The closeness among factors is measured according to the
similarity or difference in the development trend of the factors. The detailed
deduction process is given in the sections.

The weight factor is calculated based on the correlation between the
lifetimeand thedominant factors,whichwere calculatedby thegray relational
analysis method. After calculation, the r1, r2, and r3 values are 0.3321, 0.3450,
and 0.3229, respectively. Furthermore, the predicted service time from the
model were compared with the experiment values, and the results are shown
inTable 6. Obviously, the predicted values of the coating life calculated by the
modelmatchwellwith the experimental values obtained fromthe experiment
with an average relative error of 6.11%. In addition, the values at 96 h and
120 hwere used as the group formodel detection, and the average prediction
error was 2.60%, indicating that the accuracy of the model is excellent. The
establishment of a comprehensive “performance-structure” failure model
ultimately enables accurate prediction of coating lifetime, which lays the
groundwork for developing image-based methods to predict coating life.

In summary, a performance-structuremodel for predicting the lifetime
of epoxy coatings in deep-sea environments was proposed, based on an
understanding of image recognition approaches. CNN and post-processing
were integrated for crack area detection. The length distribution and sta-
tistical evolution of cracks were extracted from SEM images to derive the
kinetic equation of cracks related to coating structure degradation. Subse-
quently, the kinetics ofwaterdiffusion andcoating adhesionwere examined,
as they are critical parameters of coating performance. Based on this
achievement, a comprehensive failuremodel incorporating three dominant
factors was established using the gray relational analysis method, achieving
excellent prediction accuracy.

Methods
Experimental materials and coating preparation
In this study, a simple epoxy resin-basedmodel coating systemwas utilized.
The coating consisted of E-44 epoxy resin (bisphenol A; Xingxing Synthetic
Materials Co., Ltd., Nantong, China) as the binder, polyamide (TY-650;
Zhengtai Anticorrosive Material Co., Ltd., Shenyang, China) as the curing
agent, and xylene as the solvent, with a mass ratio of 1:0.8:0.3 for a stoi-
chiometric reaction. The amount of a commercial mica powder (400mesh,
Shanghai Macklin Co., Ltd.) is 20 wt% of the coating (epoxy resin and the
curing agent).Other reagents and solventswere purchased fromSinopharm
Chemical Reagent. All chemicals and solvents were used as received. The
paints were stirred at 1000 rpm for 1 h and then allowed to stand for 0.5 h to
partially cure before brushing.

Two types of samples were prepared, coating/metal sample and free
film sample. The coating thickness used in the experimentwas 200 ± 10 μm.
The thickness of free film sample was measured by a micrometer caliper,
and the coating thickness of coating/metal sample was obtained by a hand-
held electronic gauge (PosiTector 6000, Defelsko, USA) following the ISO
2808 standard procedures. The samples that meet the requirements were
selected for the next experiments. The coating/metal sample was prepared
by brushing the paint on a steel substrate, then it was cured in an oven under
the conditions: 40 °C for 4 h, 60 °C for 20 h, and then room temperature
(25 °C, 30%RH) for 7days. The substratewashot-rolled steel sheetswith the
following composition (in wt%): 4.67 Ni, 0.60 Cr, 0.46 Mo, 0.065V, 0.54
Mn, 0.076 C, and Fe balance. The steel sheets were ground to 240-grit finish
and then degreased and dewatered using acetone and ethanol, respectively.
The surface roughness of substrate Ra (the profile arithmetic average error)
was15–20mm.Thedimensionsof the steel substratewere40mm×15mm×
2mmfor the simulated deep-sea experiments. The freefilm sample forwater
absorption test was prepared by brushing the paints onto a clean silica gel
plate. After curing in an oven at 40 °C for 4 h, the filmwas peeled off from the
plate and cut into the dimensions of 75mm×15mm×0.2mm.Thefilmwas
further cured at 60 °C for 20 h and at room temperature (25 °C, 30% RH)
for 7 days.

Experimental setup and performance measurements
The environmental simulation experiments were conducted using an
Automatic Deep-Sea Simulation System6. Based on the composition of an
autoclave, a pressurizing device, a magnetic-driving rotating device and a
control device, this equipment enables precise control and simultaneous
simulation of hydrostatic pressure and fluid flow conditions. The schematic
diagram for the equipment is provide in Supplementary Fig. 5a. A double-
decker rotating clamp design was utilized to precisely control the linear
velocity of the specimen surface during service,which can simulate a specific
flow rate in actualflow condition (see Supplementary Fig. 5b). The diameter
of the rotating clampdiskwas 88mmwith eight specimens installed equally
spaced in the slots near the edge of each layer.

The deep-seafluid-pressure condition (6MPa, 3m/s)was simulated in
the equipment.The simulatedpressurewas set to6MPa,which corresponds
to the hydrostatic pressure experienced at a depth of 600meters in deep-sea
environments. In addition, the fluid rate conducted by rotating device
(specimen peripheral velocity) was maintained at 3m/s to simulate the
dynamic conditions that coatings might encounter in these environments.

Table 6 | Predicted service time from the model and the
experiment values

Lt/μm Xð0Þ
p ðtÞ /MPa Qt/% Experiment

time/h
Predicted
service time/h

Relative
error/%

663.163 5.21 0.676 12 14.29 −19.08

757.422 4.36 1.436 36 34.12 5.22

832.186 3.25 1.653 48 50.00 −4.17

968.529 3.10 1.792 60 59.91 0.15

1147.40 2.44 1.840 72 72.51 −0.71

1779.28 2.12 1.994 96 96.91 −0.95

3065.48 1.54 2.001 120 114.91 4.24

Fig. 7 |Variation in the crack length on the surface of the epoxymica coating and the
fitting curve.

Table 5 | Crack length of epoxy mica coatings and the fitting
results

Time/h Test value/μm Fitting value/μm

12 663.16 655.18

48 832.19 844.05

72 585.42 1147.40

96 1779.28 1773.76

120 3065.48 3067.08
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The experimental period lasted for 120 h. This duration was chosen to
ensure sufficient exposure time for potential degradation or changes to
occur. The solution temperature was kept at 25 ± 1 °C throughout the
experiment. A solution of 3.5 wt%NaCl was prepared with analytical grade
NaCl anddistilledwater. The dissolved oxygen in the solution is sufficient as
air can circulate during the removal process for specimens.

The scanning electron microscope (SEM, JSM-6360LV, Japan) was
used to observe and record the surface morphology of the coatings at dif-
ferent time. A gravimetric test was conducted to investigate the behavior of
water absorption.Themass gainsof freefilm samplesweremeasuredusing a
Sartorius MC5 microbalance with a resolution of 1 μg after different
immersion time. Three replications were needed for each test and the
averages were calculated. The adhesion of the coating to the steel substrate
wasmeasured following the guidelines of ASTMD4541-02. A Positest Pull-
Off Adhesion Tester was used to obtain the adhesion values. This instru-
ment applies a force to the coating surface until it detaches from the steel
substrate, providing a quantitative measure of the adhesion strength.

Construction of the image recognition process
The Framework of the image recognition includes CNN and post-
processing. First, the convolutional neural network is utilized to identify and
locating the suspected crack area, which contributes to further calculation of
crack length distribution. The network is composed of input layer, con-
volution layer, pooling layer, fully connected layer and output layer, as
shown inFig. 8.To accurately identify these cracks, 640×640pixel photosof
RGB channels were cropped and used as the input layer. An eight-layer
CNN network with 3 convolutional layers and 3 × 3 convolution kernels in
each convolutional layer is selected to train the input image. Each con-
volutional layer is followed by a pooling layer. The maximum pooling
method is adopted and a 2 × 2 sliding filter is used to improve the efficiency
of data processing. In the fully connected layer, regularized Dropout ran-
dom neuron inactivation is used, and SoftMax classifier is used for classi-
fication, thereby increasing the anti-interference ability of the network and
reducing over-fitting. To improve of the accuracy of crack identification, the
network architecture was optimized by increasing the network depth and
using multi-scale convolutional layers. The Pytorch deep learning frame-
workwas used to extract image information features in the network. During
the training process, the network was iterated 100 times with a batch size of
20. The learning rate was set to 0.001, and a dropout regularization coeffi-
cient of 0.5 was used to increase the anti-interference ability of the network
and reduce over-fitting. The Adam optimizer and ReLU actiation function
were used in the network. The loss function was Categorical Crossentropy,
and the network was trained using cross-validation.

Second, the mask of suspected crack areas was obtained from the
results of CNN processing. Taking the mask and raw image as the input
again, the post-processing procedure was carried out to retrieve the cracks,
including the Sobel edge gradient calculation, Sobel edge detection, Hough
transform and normalization. The Sobel edge gradient calculation is used to
calculate the gradient intensity of the image, which helps to highlight the
edges of the cracks. The Sobel edge detection algorithm is then applied to
detect these edges and obtain a binary image where the cracks are

represented as white pixels. The Sobel edge detection algorithmwas chosen
since it has a simple structure and can better suppress noise, achieving
preliminary extractionof crack contours in the image.The effect of the Sobel
algorithm is shown in Fig. 9. The following step is to perform the Hough
transform to replace the pixels of the image into the parameter space,
thereby extracting the graphic of a specific shape in the image, which ismost
commonly used to detect straight lines. After the Hough transform, the
straight-line segments are connected to form a complete cracked skeleton,
effectively representing the cracks in the image. This skeleton provides a
clear visualization of the crack paths, as shown in Fig. 9. By utilizing this
image recognitionmethod, accurate and effective extraction of crack length
distribution from the coating photos can be achieved. This information is
crucial for the construction of a life prediction model for the coating, as it
helps in understanding the extent and distribution of cracks, which are
important factors in predicting the remaining useful life of the coating.

Precision measures the correctness of crack recognition in images
processed by the constructed model, which indicates the proportion of
examples classified as positive that are indeed positive, namely, the pro-
portion of all results predicted by the model to be positive samples that are
truly positive. Confidence is used to determine whether an object within the
boundingbox is a positiveor anegative sample,withgreater thanconfidence
thresholds determined to be positive samples and less than confidence
thresholds determined to be negative samples (i.e., backgrounds).

The formula is as follows:

Precision ¼ TP
TP þ FP

ð8Þ

where True Positive (TP) is the number of positive samples recognized as
positive, and False Negative (FP) refers to the number of negative samples
misclassified as positive.

Compared with precision, recall emphasizes the assessment of integ-
rity. The formula is as follows:

Recall ¼ TP
TP þ FN

ð9Þ

where True Positive (TP) is the number of positive samples recognized as
positive, and False Negative (FN) refers to the number of positive samples
misclassified as negative.

GM (1,1) model
Given the limited experimental data on coating adhesion, the GST predic-
tion methodology leverages its inherent advantages to utilize available
information effectively and forecast future trends. The white system in GST
refers to a fully defined information system, while the black system repre-
sents an undefined information system. The gray system, on the other hand,
combines both defined and undefined information. One of the require-
ments of this theory is that the original data shouldhave equal time intervals.
Data accumulation helps to reduce the influence of random factors present
in the original time series data. By accumulating the data, the random

Fig. 8 | Construction of convolutional neural networks for the suspected crack area identification.
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fluctuations are averaged out, and the underlying trends or patterns in the
data become more prominent. Once the data has been accumulated, a
differential equation known as GM (n,m) is established for the generated
numbers, where n denotes the order of the differential equation and m
signifies the number of variables. Particularly, GM (1,1) model, which
consists of a first-order differential equation and one variable, has the
advantages of the simplicity of the calculation and high accuracy of the
model, is suitable for the small amount of the data.

A sequence X(0) was defined as the wet adhesion values of the coatings
at different immersion time, and the initial sequence is:

Xð0Þ
 � ¼ Xð0Þ
ð1Þ;X

ð0Þ
ð2Þ;X

ð0Þ
ð3Þ; :::;X

ð0Þ
ðnÞ

n o
ð10Þ

where X(0) represents the wet adhesion (non-negative value), and n is the
sample size of the data.

The corresponding time sequence is:

ftg ¼ ft1; t2; t3; :::; tng ð11Þ

where t is the immersion period. In practice, the sequence of the coating is:

fX 0ð Þg ¼ f7:20; 5:21; 5:02; 4:36; 3:25; 3:10; 2:44g ð12Þ

and its corresponding time sequence is:

ftg ¼ f12; 24; 36; 48; 60; 72g ð13Þ

Accumulating Generation Operator (AGO) or Inverse AGO is the
precondition of the establishment of the graymodel, which can smooth the
randomness and strengthen the regularity of the sequence. Herein, the gray
sequence generation is performed by AGO, and the monotonically
increasing sequence X(1) is obtained as follows:

Xð1Þ
 � ¼ Xð1Þ
ð1Þ;X

ð1Þ
ð2Þ;X

ð1Þ
ð3Þ; :::;X

ð1Þ
ðnÞ

n o
ð14Þ

where

Xð1Þ
ðkÞ

n o
¼

Xk
i¼1

Xð0Þ
ðiÞ; ðk ¼ 1; 2; 3 � � � nÞ ð15Þ

The mean sequence Z(1) of X(1) is defined as follows:

Zð1Þ
 � ¼ Zð1Þ
ð1Þ;Z

ð1Þ
ð2Þ;Z

ð1Þ
ð3Þ; � � �Zð1Þ

ðnÞ
n o

ð16Þ

where

Zð1Þ
ðkÞ ¼

1
2

Xð1Þ
ðkÞ þ Xð1Þ

ðk�1Þ
h i

; ðk ¼ 2; 3; 4 � � � nÞ ð17Þ

The least-square estimate sequence of the gray differential equation is
as follows:

Xð0Þ
ðkÞ þ aZð1Þ

ðkÞ ¼ u ð18Þ

Then, the GM (1, 1) whitening differential equation of X(1)
(k) is as

follows:

dXð1Þ
ðkÞ

dt
þ aXð1Þ

ðkÞ ¼ u ð19Þ

where the parameters a and u, can be determined by the least-square
method:

½a; u�T ¼ ðBTBÞ�1
BTYn ð20Þ

where

B ¼ �Zð1Þ
ð1Þ;�Zð1Þ

ð2Þ; . . . ;�Zð1Þ
ðnÞ; 1; 1; . . . ; 1

h iT ð21Þ

Fig. 9 | Framework of the image recognition for crack information extraction of the organic coatings.
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Yn ¼ ½Xð0Þ
ð2Þ;X

ð0Þ
ð3Þ; :::;X

ð0Þ
ðnÞ�

T ð22Þ

By solving Eqs. (20)–(22) based on the data above, the parameters a
and u of the coating is 0.1493 and 6.9756, respectively.

The solution of X(1)
(k) at time k is:

Xð1Þ
p ðkÞ ¼ Xð0Þ

ð1Þ �
u
a

h i
e�aðk�1Þ þ u

a
; ðk ¼ 2; 3; :::; nÞ ð23Þ

As above, p represents the predicted value. Then, to obtain the pre-
dicted value of the primitive data at time k, the Inverse Accumulating
Generation Operator (IAGO) is used to establish the following GM (1, 1):

Xð0Þ
p ðkÞ ¼ Xð0Þ

ð1Þ �
u
a

h i
e�aðk�1Þð1� eaÞ; ðk ¼ 2; 3; :::; nÞ ð24Þ

for

t ¼ t1 þ Nðk� 1Þ ð25Þ

where t1 is the initial timeof the time series.N is the time interval, that is 12 h.
Replacing the parameter k in Eq. 23 with t, the following equation can then
be obtained:

Xð0Þ
p ðtÞ ¼ Xð0Þ

ð1Þ �
u
a

h i
e�aðt�T1

N Þð1� eaÞðt ≥ t1 þ NÞ ð26Þ

Equation (26) is the gray GM (1,1) model of coating based on GST for
the wet adhesion of coatings. The measured adhesion data are calculated
according to the above steps.

To analyze the accuracy of the model, the relative error (RE) and
average relative error (ARE) were calculated using the following formula.

RE ¼ Xð0ÞðkÞ � Xð0Þ
p

Xð0ÞðkÞ × 100% ð27Þ

ARE ¼ 1
n

Xn

k¼1

Xð0ÞðkÞ � Xð0Þ
p ðkÞ

���
���

Xð0ÞðkÞ × 100% ð28Þ

Weight factors of failure model calculated by gray relational
analysis
The data series that reflects the behavior characteristics of the system is called
the reference series, and the data series consisting of the factors affecting the
systembehavior are called the comparison series. In this experiment, the low-
frequency total impedance value |Z|0.01 Hz obtained from the EIS test of the
coating at each time was selected as the reference series. The equivalent EIS
results are shown in Supplementary Fig. 4. The crack length, wet adhesion of
the coating and thewater absorption of the coating at each timewere defined
as comparison series. These data are shown in Supplementary Table 1.

Theoriginal data of the experimentwere further averaged, and then the
correlation coefficient of each series was calculated as follows:

ξi kð Þ ¼ minimink y kð Þ � xi kð Þ
�� ��þ ρmaximaxk y kð Þ � xi kð Þ

�� ��
y kð Þ � xi kð Þ
�� ��þ ρmaximaxk y kð Þ � xi kð Þ

�� �� ð29Þ

OrderΔiðkÞ ¼ yðkÞ � xiðkÞ
�� ��; then

ξi kð Þ ¼ miniminkΔi kð Þþ ρmaximaxkΔi kð Þ
Δi kð Þ þ ρmaxmaxΔi kð Þ

ð30Þ

of which ρ∈ (0, ∞) is called the resolution coefficient. The larger the reso-
lution coefficient is, the larger the resolving power and the smaller ρ. In
general, the value range of ρ is (0,1), and the specific value depends on the

situation. When ρ ≤ 0.5463, the resolution is the best, and ρ is usually
set to 0.5.

Since the correlation coefficient is the value of the degree of correlation
between the subseries and the parent series at each time (i.e., each point in
the curve), there is more than one correlation coefficient, and the infor-
mation is too scattered for overall comparison. Therefore, it is necessary to
concentrate the correlation coefficients at each time (each point on the
curve) to one value, that is, to find the mean value. As a quantitative
expression for comparing the degree of association between the number
series and the reference number series, the formula of the association degree
w i is as follows:

wi ¼
1
n

Xn

k¼1

ξiðkÞ ð31Þ

From Eq. (29), the calculation formula of the weight Factor ri is

ri ¼
wiPn
i¼1wi

ð32Þ

Equation (32) is the weight factor calculated by gray relational degree
method, and the results are shown in the main text.

Data availability
The raw/processed data required to reproduce these findings cannot be
shared at this time as the data also forms part of an ongoing study.

Code availability
The convolutional neural network was performed using Keras, an open-
source artificial neural network library written in Python.
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