PIPING / PUMPING

Uponor Compares Material and Labor Costs of Five Pipe- System Types

Material and labor costs were determined for PEX, chlorinated polyvinyl chloride (CPVC), copper press, copper sweat, and polypropylene (PP-R).

AUG 12, 2015

Uponor, provider of cross-linked polyethylene (PEX) plumbing, indoor-climate, and fire-safety systems for residential and commercial buildings, recently completed a study comparing the cost-effectiveness of five types of plumbing piping for a multifamily building.

Material and labor costs were determined for the following system types:

- PEX.
- Chlorinated polyvinyl chloride (CPVC) trunk and branch.
- Copper press trunk and branch.
- Copper sweat trunk and branch.
- Polypropylene (PP-R) trunk and branch.

The building was a 517,550-sq-ft, 189-unit multifamily structure with three dwelling levels over a one-level parking garage.

The design had the main cold-water distribution routed in the parking garage and the main hot-water distribution routed in the third-floor ceiling, with risers transporting water up to the fourth floor and down to the second floor (figures 1 and 2).

FIGURE 2. Riser for CPVC, copper, and PP-R trunk and branch units.

Although the project called for pipe and fittings larger than 2 in., the study looked only at costs for pipe, fittings, and valves 2 in. and smaller.

Material costs were calculated at 2014 trade pricing values from across the United States.

Materials

For each system type, the following materials were included in the project costs:

PEX

- ½- to 2-in. Engel- or peroxide-method (PEX-a) pipe and ASTM F1960, Standard
 Specification for Cold Expansion Fittings With PEX Reinforcing Rings for Use With Cross-linked Polyethylene (PEX) Tubing, fittings.
- 1- to 2-in. pipe support channel with cable ties (except in units).
- 1- to 2-in. ASTM F1960 elbows.
- ½- to 2-in. ASTM F1960 commercial ball valves.
- Sweat adapters to transition to larger-diameter copper pipe.
- Engineered polymer multiport tees.

- Plugs at fixture terminations for lavatories, water closets, and sinks.
- ASTM F1960 outlet boxes for ice makers and washing machines.

CPVC

- ½- to 2-in. pipe and fittings (SDR-11 CTS).
- ½- to 2-in. elbows.
- Solvent-cement fittings.
- ½- to 2-in. commercial ball valves with threaded adapters.
- Caps at fixture terminations for lavatories, water closets, and sinks.
- Boxes for ice makers and washing machines.

Copper press

- ½- to 2-in. Type L pipe and press fittings.
- ½- to 2-in. press elbows.
- ½- to 2-in. commercial press ball valves.
- Caps at fixture terminations for lavatories, water closets, and sinks.
- Boxes for ice makers and washing machines.

Copper sweat

- ½- to 2-in. Type L pipe and fittings.
- ½- to 2-in. elbows.
- ½- to 2-in. commercial sweat ball valves.
- Caps at fixture terminations for lavatories, water closets, and sinks.
- Boxes for ice makers and washing machines.

PP-R

- ½- to 2-in. pipe and fittings, with a standard dimension ratio (SDR) of 11 for cold-water pipe and a SDR of 7.4 multilayer (MF) for hot-water pipe.
- ½- to 2-in. elbows.
- Socket-type fittings.
- ½- to 2-in. commercial ball valves with threaded adapters.

- Caps at fixture terminations for lavatories, water closets, and sinks.
- Boxes for ice makers and washing machines.

Labor

Labor was calculated using the Mechanical Contractors Association of America

(MCAA) component-method approach. According to MCAA: "The component method is based on the use of labor units that represent all activities necessary for the installation of one component (such as a 90-degree elbow or a tee). For piping, the unit is in man-hours per foot, and for components such as fittings, the unit is represented by each. A labor unit is expressed in terms of man-hours to install a unit of material (such as a foot of pipe), an individual item (such as a fitting or valve), or perform a specific task (such as welding a joint)."

In developing the labor units, MCAA reviewed many aspects of installation, including:

- · Receiving.
- Unloading.
- Stockpiling.
- Distribution.
- Handling and erection.
- Fitting and joining.
- Pressure testing.

Labor costs were calculated using a rate of \$75 per hour, based on extensive research of labor rates across the United States.

Study Results

Material and labor costs were determined by building section:

- Main piping, which included all pipe and fittings 2 in. and smaller that were part of the horizontal cold-water distribution system on the garage level and the hot-water system on the third level.
- Unit piping, which included all pipe and fittings within units after the riser branch. Unit costs included hot- and cold-water isolation valves. Fixture terminations were plugged or capped for rough-in.

• Riser piping, which included all vertical piping and fittings. For cold-water risers, the piping started in the parking garage and rose roughly 30 ft to the fourth floor. For hot-water risers, the piping started in the third-floor ceiling space and was distributed 10 ft up to the fourth floor and 10 ft down to the second floor. Riser costs included isolation valves at the base.

Table 1 shows estimated labor hours for the individual building sections.

Building section	PEX	CPVC	Copper press	Copper sweat	PP-R
Main piping	216.51	224.80	227.73	298.95	299.66
Units	3,353.81	5,361.27	4,200.69	8,060.25	10,442.49
Risers	165.82	512.33	492.98	981.89	1,195.91
Total	3,736.14	6,098.40	4,921.40	9,341.09	11,938.06

TABLE 1. Labor hours by building section.

Table 2 shows the total project cost.

Building section	PEX	CPVC	Copper press	Copper sweat	PP-R
Main piping	\$23,492.12	\$12,610.06	\$35,358.90	\$34,255.30	\$16,245.63
Units	\$64,477.84	\$60,998.25	\$193,791.18	\$164,339.01	\$114,588.81
Risers	\$31,538.07	\$28,958.96	\$54,500.69	\$48,538.04	\$34,305.17
Material cost	\$119,508.03	\$102,567.27	\$283,650.77	\$247,132.35	\$165,139.61
Labor cost at \$75 per hour	\$280,210.30	\$457,380.00	\$369,105.00	\$700,581.75	\$895,354.50
Project total	\$399,718.33	\$559,947.27	\$652,755.77	\$947,714.10	\$1,060,494.11

TABLE 2. Total project cost (U.S. dollars) by building section.

Individual-Unit Comparison

Material and labor costs were broken down at an individual-unit level. Figures 3 and 4 show unit piping. Table 3 shows the labor hours required to pipe a unit. Table 4 shows the total costs of piping a unit.

FIGURE 3. Individual-unit PEX design.

FIGURE 4. Individual-unit CPVC, copper, and PP-R trunk and branch design.

PEX	CPVC	Copper press	Copper sweat	PP-R
19.36	28.65	22.48	43.11	55.80

TABLE 3. Individual-unit labor hours.

	PEX	CPVC	Copper press	Copper sweat	PP-R
Material cost	\$365.20	\$326.31	\$1,029.21	\$870.11	\$614.59
Labor cost at \$75 per hour	\$1,452.00	\$2,148.75	\$1,686.00	\$3,233.25	\$4,185.00
Project total	\$1,817.20	\$2,475.06	\$2,715.21	\$4,103.36	\$4,799.59

TABLE 4. Total individual-unit cost.

Individual-Riser Comparison

The labor required for an individual riser is shown in Table 5. Table 6 shows the total costs of piping a riser.

PEX	CPVC	Copper press		PP-R
2.75	8.37	8.07	16.02	19.13

TABLE 5. Individual-riser labor hours.

	PEX	CPVC	Copper press	Copper sweat	PP-R
Material cost	533.39	\$478.40	\$911.47	\$811.80	\$574.12
Labor cost at \$75 per hour	\$206.25	\$627.75	\$605.25	\$1,201.50	\$1,434.75
Project total	\$739.64	\$1,106.15	\$1,516.72	\$2,013.30	\$2,008.87

TABLE 6. Total individual-riser cost.

This report was prepared by Daniel Worm, plumbing-product specialist for Uponor. Worm has more than 14 years of plumbing-industry experience, with an emphasis on application and design. He is a licensed building contractor, a certified plumbing designer, and a member of the American Society of Plumbing Engineers. He holds a degree in architectural design and drafting. He can be reached at daniel.worm@uponor.com.