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Abstract
The objective of this study is to assess the effectiveness of a novel structure comprising a geocomposite drainage layer and a 
thin sand layer (GDL + sand) in mitigating the rapid dumping of excavated clay and its associated issues, such as landslides. 
Two sets of direct shear tests were conducted to investigate the influence of sand layer thickness and compaction degree on the 
interface shear behavior of the GDL + sand structure. As the sand layer thickness increased, both the interface shear strength 
and friction angle gradually increased, first more sharply and then at a slower rate toward stability, while the interface cohe-
sion decreased gradually. The optimal sand layer thickness for achieving the most effective reinforcement in stabilizing the 
clay was identified as 10 mm. A higher sand layer compaction degree was found to result in increased interface shear strength, 
interface friction angle, and interface cohesion. Building on these findings, the reinforcing efficiency of the GDL + sand 
structure was investigated through mechanism analysis in comparison to that of a geogrid + sand structure and GDL structure 
as per the interface friction coefficient. The ranking of interface friction coefficients among the three structures emerged as: 
geogrid + sand > GDL + sand > GDL. These results suggests that the GDL + sand structure exhibits superior reinforcement 
efficiency compared to the GDL structure and offers better drainage efficiency than the geogrid + sand structure.

Keywords GDL + sand structure · Excavated clay · Sand layer thickness · Sand layer compaction degree · Interface friction 
coefficient

Introduction

Chinese cities have extensively exploited underground 
spaces since the turn of the twenty-first century (Kataguiri 
et al. 2019). By 2017, these activities had produced a stag-
gering two billion tons of excavated soil (Zhan et al. 2018). 
Currently, the primary method for disposing of excavated 
soil in China involves landfilling or dumping. Due to a lack 
of extensive construction experience and the absence of 
technical standards, uncontrolled dumping often leads to 
disasters such as landslides in soft soil regions of China 
(Wang et al. 2022). A tragic example unfolded in Shenzhen’s 

Guangming New District on December 20, 2015, resulting 
in approximately 2.51 ×  106  m3 of excavated soil sliding out 
of a dump site, impacting nearly 0.38  km2, destroying 33 
buildings, and killing 77 people (Zhan et al. 2018, 2021; Yin 
et al. 2016). The excavated soil in such regions is character-
ized by high fine grain content, high water content, small 
permeability coefficient, and low shear strength (Tang and 
Liu 2014). Dangerous conditions intensify throughout the 
soil-filling process as dumping height increases, the soil 
consolidation process is sluggish and the soil shear strength 
increases slowly (Qian 2021). Addressing these issues 
requires enhancing both the drainage capacity and shear 
strength of fine-grained soil dumps.

Over recent decades, geosynthetic-reinforced structures 
have been proven successful in improving the stability of soil 
dumps while reducing construction costs (Yang et al. 2019; 
Luo et al. 2020). These structures are widely employed to 
strengthen embankment enhancement (Tolooiyan et  al. 
2009; Wang et al. 2011; Fischer 2022), retaining wall (Por-
telinha et al. 2013; Portelinha and Zornberg 2014; Chehade 
et al. 2019), and slopes (Viswanadham and König 2009; Hu 
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et al. 2010; Liu et al. 2012; Luo et al. 2018), improving 
overall stability through tensile reinforcement and geosyn-
thetic/soil interactions (Liu et al. 2012; Chehade et al. 2019). 
The performance of reinforced soil structures hinges on the 
mobilization of interface shearing resistance between the 
soil and reinforcement. This criterion typically excludes the 
use of fine-grained soil as a backfill material in reinforced 
soil structures (Sridharan et al. 1991). However, two inno-
vative techniques have been developed to overcome this 
limitation.

The first of these techniques involves the geogrid + sand 
structure, which incorporates reinforcement within a fric-
tional soil layer. Various studies employing direct shear tests 
(Abdi et al. 2009a, 2009b), pullout tests (Sridharan et al. 
1991; Abdi and Arjomand 2011; Abdi and Zandieh 2014; 
Abdi et al. 2021), triaxial compression tests (Unnikrishnan 
et al. 2002; Yang et al. 2016), centrifuge tests (Jones and Van 
Rooy 2014), model tests (Yang et al. 2023) and numerical 
modelling (Abdi and Zandieh 2014; Cui et al. 2021; Xie 
et al. 2022) have demonstrated that the geogrid + sand struc-
ture can effectively enhance soil-reinforcement interaction. 
Additionally, it establishes drainage paths that reduce pore 
water pressure, thereby improving the shear behavior of fine-
grained soil fills. The shear strength of clay reinforced with 
the geogrid + sand structure increases as the number of rein-
forcement layers increases (Yang et al. 2016). Interestingly, 
the shear strength does not continually increase with increas-
ing sand layer thickness; there is, in fact, an optimal sand 
layer thickness (Sridharan et al. 1991; Abdi et al. 2009a, 
2009b; Abdi and Arjomand 2011; Abdi and Zandieh 2014; 
Xie et al. 2022). However, Jones and Van Rooy (2014) con-
ducted centrifuge model tests to find that although geogrid 
reinforcement enhances load-bearing capacity by distribut-
ing the applied load to the sand layer, it deforms the broader 
clay layer. Further, connectivity of sand layers can be com-
promised by differential settlement in fine-grained soil fills, 
significantly reducing their drainage path functionality (Cao 
et al. 2021).

The second of these innovative techniques involves the 
geocomposite drainage layer (GDL), which consists of a 
drainage core wrapped in permeable geotextiles. GDL offers 
dual functions of reinforcement and drainage, surpassing 
planar geosynthetics (e.g., geogrid and geotextile) (Jang 
et al. 2015) in both economical and construction advantages 
over traditional gravel drains (Chinkulkijniwat et al. 2017). 
In recent years, GDL has been increasingly adopted in a 
wide range of geotechnical and geoenvironmental applica-
tions, including landfill cover systems (Narejo 2013; Her-
sey and Power 2023), paved roads (Bahador et al. 2013; 
Bilodeau et al. 2015; Li et al. 2017; Saride et al. 2022; 
Kalore and Babu 2023), reinforced soil slopes (Bhattacher-
jee and Viswanadham 2017, 2019; Cholewa and Plesiński 
2021; Özer and Akay 2022) and walls (Bhattacherjee and 

Viswanadham 2019; Mamaghanian et al. 2019; Razeghi 
et al. 2019; Nunes et al. 2022). When GDL is utilized in 
soil slopes or walls, the interface shear strength properties 
between the GDL and soil may govern the structures’ sta-
bility. However, the shear strength of GDL-clay interface 
may fall below that of unreinforced clay when subjected 
to wet and dry cycles (Chao and Fowmes 2021; Chao and 
Fowmes 2022). Othman et al. (2018) conducted a series of 
field measurements on a clayed soil-GDL interface to find 
that GDL application generally reduced water content and 
pore water pressure, though soil softening at the interface 
reduces shear strength due to soaking, thereby affecting the 
stability of the structure.

In summary, while both the geogrid + sand and GDL 
structures exhibit dual functions of reinforcement and drain-
age, they have distinct shortcomings as well. To harness 
their advantages and address their limitations, a novel rein-
forced structure, the GDL + sand structure, was developed in 
this study by integrating a GDL into a sand layer. Two sets 
of direct shear tests were conducted on excavated clayed soil 
(representative of typical excavated soil in soft soil regions 
of China) reinforced with the GDL + sand structure. Based 
on the test results, the effects of sand layer thickness and 
compaction degree on the interface shear behavior of the 
GDL + sand structure were analyzed. The interface friction 
coefficient was introduced to examine the reinforcement 
efficiency of the three reinforced structures: geogrid + sand, 
GDL, and GDL + sand.

Materials and methods

Test apparatus

The STJY-5 direct shear instrument (Hebei Luxing Anda 
instrument Co., LTD, China) was used in this study to meas-
ure the shear curve of the interface between sand and GDL, 
as illustrated in Fig. 1. The instrument consists of a shear 
stress system, normal stress system, and data acquisition 
system.

The shear stress system includes upper and lower shear 
boxes, an electric motor, a clamping bar, and a steel block. 
Both shear boxes have internal dimensions of 300 mm × 300 
mm in plane and 50 mm in height. Throughout the shear 
process, the upper shear box was fixed in the horizontal 
direction while the lower shear box freely moved horizon-
tally on the bearing rail beneath it, driven by an electric 
motor. The device is displacement-controlled, allowing for 
shear rates between 0.02 mm/min and 3 mm/min. A clamp-
ing bar anchors the geosynthetic material to the lower shear 
box, ensuring it remained fixed during the shearing pro-
cess. Additionally, a steel block with a textured surface in 
the lower shear box resists the vertical displacement of the 
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geosynthetics and relative displacement between the geosyn-
thetics and lower shear box. The normal stress system incor-
porates dead weight via a level principle for stress applica-
tion and a steel plate for uniformizing the stress distribution.

The data acquisition system includes horizontal and 
vertical displacement transducers, as well as load cells for 
normal stresses and shear stresses. The horizontal displace-
ment was recorded on a linear variable differential trans-
former (LVDT) with a maximum measurement of 100 mm, 
positioned at the front of the lower shear box. The vertical 
displacement was recorded using an LVDT with a maximum 
measurement of 50 mm, which refers to the rigid plate dis-
placement. Normal and shear forces were measured using 
tension–compression sensors with load capacities of 40 kN 
and 10 kN, respectively. All the measurements presented in 
this paper were recorded digitally during the experiment.

Test materials

Two types of soils were utilized in this study: clay and 
sand. Their properties are summarized in Table 1 and 
Fig. 2. The clay was sourced from a foundation excavation 
engineering site in Hangzhou, representing a soil widely 

distributed in soft soil regions of China. The specific grav-
ity (Gs) is 2.757, and the uniformity coefficient (Cu) and 
curvature coefficient (Cc) are 4.57 and 1.07, respectively. 
The natural moisture content (w0) was determined to be 
35.06%. The liquid limit (wL) and plastic limit (wP) are 
41.81% and 22.72%, respectively. The consolidation coef-
ficient ranges from 0.64 ×  10–2 to 3.19 ×  10–2  cm2/s. Stand-
ard quartz sand was purchased from Fujian Province. It has 
a Gs of 2.624, Cu of 4.23, and Cc of 1.16. The optimum 
moisture content and maximum dry density were deter-
mined to be wopt = 12.25% and ρdmax = 1.848 g/cm3.

A proprietary GDL (TD60-2-E200) was utilized in this 
study. It is composed of a high-density polyethylene drain-
age core with a non-woven needle-punched polyethylene 
terephthalate geotextile filter thermally bonded on each 
side. Its main properties are summarized in Table 2.

Fig. 1  Cross-section of direct 
shear test instrument

Table 1  Properties of clay and sand

Property Clay Sand

Natural moisture content (w0, %) 35.06 12.50
Specific gravity (Gs) 2.76 2.62
Liquid limit (wL, %) 41.81 -
Plastic limit (wP, %) 22.72 -
Optimum moisture content (wopt, %) 20.36 12.25
Maximum dry density (ρdmax, g/cm3) 1.72 1.85
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Fig. 2  Particle size distributions of clay and sand
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Test procedure

Two groups of direct shear tests were conducted in this 
study, as outlined in Table 3. The first group was designed 
to examine the effects of sand layer thickness on the inter-
face shear behavior of the GDL + sand structure. In the 
first group of tests, the normal stress varied from 25 to 
150 kPa, the sand layer thickness varied from 0 to 14 mm, 
and the sand layer compaction degree was fixed at 85%. 
The second group was designed to investigate the effects 
of sand density on the interface shear behavior of the 
GDL + sand structure. The normal stress was kept consist-
ent with the first group, while the sand layer compaction 
degree varied from 85 to 95% and the sand layer thickness 
was fixed at 10 mm.

Each test proceeded through the following steps:

The iron block was placed in the lower shear box, then 
the GDL was placed on the iron block and fixed on the 
sides of the lower shear box.
The sand was paved in the upper shear box to the des-
ignated thickness and compaction degree.
The clay was evenly laid over the sand layer in the 
upper shear box to the upper edge, then the normal 
stress was applied to a predetermined value.
When the clay layer reached a consolidation degree 
(U) of 90%, the lower shear box initiated horizontal 
movement at a shear rate of 1.0 mm/min until the shear 
displacement reached a maximum value of 30 mm.

Results and analysis

Effect of sand layer thickness on interface shear 
behavior of GDL + sand structure

Figure  3 presents the interface shear curves of the 
GDL + sand structure under different sand layer thick-
nesses. As the shear displacement progressed, the inter-
face shear stress initially exhibited a rapid increase, fol-
lowed by a slower increase, indicative of typical hardening 
behavior. Notably, the interface shear stress increased 
with increasing normal stress at a given sand layer thick-
ness and a given shear displacement. For example, as the 
normal stress increased from 25 to 150 kPa, the interface 
shear stress increased from 15.11 to 64.20 kPa at sand 
layer thickness of 10 mm and shear displacement of 30 
mm. This phenomenon can be attributed to the enhance-
ment of interface friction resistance with increased normal 
stress, which restricts mutual particle adjustment and forti-
fies occlusal action (Ding et al. 2018).

Additionally, as sand layer thickness increased, the 
interface shear stress initially trended upward followed 
by a less noticeable change at a given normal stress and 
shear displacement. For instance, when the normal stress 
was 100 kPa and the shear displacement was 30 mm, the 
interface shear stress increased from 26.54 to 45.11 kPa as 
the sand layer thickness increased from 6 to 10 mm. How-
ever, it slightly decreased from 45.11 to 45.08 kPa as the 
sand layer thickness further increased from 10 to 14 mm.

Figure 4 shows the interface shear strength envelopes and 
parameters of the GDL + sand structure at different sand 
layer thicknesses. The interface shear strength was deter-
mined at a shear displacement of 30 mm. The Mohr–Cou-
lomb strength theory was applied to calculate the inter-
face cohesion and interface friction angle. As depicted in 
Fig. 4(a), the interface shear strength initially increased 
and then stabilized with the increase in sand layer thickness 
under a given normal stress. For example, at a normal stress 
of 150 kPa, the interface shear strength increased from 38.77 
to 64.20 kPa as the sand layer thickness increased from 0 to 

Table 2  GDL properties

Notes: P = in plane; NP = normal to plane

Property GDL (TD60-2-E200)

Drainage core Geotextile

Material High-density polyethylene Polyethylene terephthalate
Thickness (mm) 6.0 1.6
Mass per unit area (g/m2) 940 200
Tensile strength-machine direction 

(kN/m)
20 10.5

Permeability (m/s) 0.87 (P) 5.4 ×  10–4 (NP)

Table 3  Experimental scheme

Test group Normal stress (σ/
kPa)

Thickness of sand 
layer (H/mm)

Compaction 
degree of sand 
layer (Dr/%)

I 25, 50, 100, 150 0, 6, 8, 10, 12, 14 85
II 10 85, 90, 95
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10 mm. However, it varied around 64.20 kPa when the sand 
layer thickness further increased from 10 to 14 mm.

As shown in Fig. 4(b), the interface cohesion of the 
GDL + sand structure gradually decreased from 5.95 to 4.05 
kPa as the sand layer thickness increased from 0 to 14 mm. 
The interface friction angle increased from 12.08° to 21.78° 
as the sand layer thickness increased from 0 to 10 mm, then 
slightly decreased to 21.99° when the sand layer thickness 
further increased to 14 mm. These results suggest that the 

provision of sand layers on both sides of the GDL effectively 
improves the shear strength of GDL-reinforced clay, and that 
10 mm is the optimal sand layer thickness in terms of the 
reinforcement effect.

Once the sand layer thickness exceeds the identified 
optimal value of 10 mm, the interface shear strength of 
GDL + sand structure tends to stabilize. This finding is in 
line with Unnikrishnan et al. (2002) that conducted triaxial 
tests on geotextile + sand structure. However, Abdi et al. 

Fig. 3  Interface shear curves 
of GDL + sand structure under 
different sand layer thicknesses: 
(a) H = 0 mm; (b) H = 6 mm; (c) 
H = 8 mm; (d) H = 10 mm; (e) 
H = 12 mm; (f) H = 14 mm
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(2009b) and Liu et al. (2018) found that the interface shear 
strength of geogrid + sand structure tends to reduce when 
the sand layer thickness exceeds the identified optimal value. 
This phenomenon may be attributed to the presence of a 
shear zone within a specific range on both sides of the rein-
forcement during the direct shear process (Liu et al. 2018). 
The properties of the soil in this shear zone significantly 
impact the interface shear strength of the GDL + sand struc-
ture. When the sand layer is relatively thin, there are rela-
tively few sand grains near the GDL, and some of the grains 
may become embedded in the clay under normal stress. Con-
sequently, the interfacial enhancement of the GDL + sand 
structure is not fully realized, resulting in an increase in 
interface shear stress with an increase in sand layer thick-
ness (Abdi et al. 2009a, b). When the sand layer is exces-
sively thick, conversely, the sand-clay interface is situated 
far from the shear zone. Thus, the sand layer fully maximizes 
its role in interfacial enhancement, seemingly independent of 
its thickness. The different variations of the interface shear 
strength with the sand layer thickness exceeds the identified 
optimal value, may be associated with the different proper-
ties of the reinforcements used.

Effect of sand layer compaction degree on interface 
shear behavior of GDL + sand structure

Figure 5 shows the interface shear curves of the GDL + sand 
structure under different sand layer compaction degrees. The 
interface shear stress gradually increased with normal stress 
at a given sand layer compaction degree and shear displace-
ment. For example, at a compaction degree of 85% and shear 
displacement of 30 mm, the interface shear stress increased 
from 15.11 to 64.20 kPa as the normal stress increased from 
25 to 150 kPa as the normal stress increased from 25 to 150 
kPa.

Furthermore, the interface shear stress increased as 
the sand layer compaction degree increased under a given 

normal stress and shear displacement. For instance, when 
the sand layer compaction degree increased from 85 to 95%, 
the interface shear stress increased from 64.20 to 85.69 kPa 
at normal stress of 150 kPa and shear displacement of 30 
mm.

Figure 6 displays the interface shear strength envelopes 
and parameters of the GDL + sand structure at different 
sand layer compaction degrees. As shown in Fig. 6(a), the 
interface shear strength increased linearly with normal 
stress under a given compaction degree of the sand layer. 
Additionally, the interface shear strength increased with the 
sand layer compaction degree under a given normal stress. 
The interface cohesion and interface friction angle of the 
GDL + sand structure under different sand layer compaction 
degrees were obtained according to the Mohr–Coulomb cri-
terion, as shown in Fig. 6(b). As the sand layer compaction 
degree increased, the interface friction angle increased grad-
ually while the interface cohesion did not markedly change. 
When the sand layer compaction degree increased from 85 
to 95%, the interface friction angle increased from 21.78° to 
28.12° while the interface cohesion slightly increased from 
4.44 to 5.06 kPa.

The inter-particle pores were reduced by an increase 
in the sand layer compaction degree, resulting in a more 
compact arrangement of sand particles and an augmented 
effective contact area. This phenomenon restricted the 
mutual adjustment of sand particles and enhanced the 
occlusion. At this point, the friction resistance faced by 
the sand particles in proximity to the GDL increased, lead-
ing to an increase in the interface friction angle (Ma et al. 
2020; Ding et al. 2018; Liu et al. 2018). Interface cohe-
sion, which is considered independent of normal stress, 
mainly arises from the lateral confining effect of reinforce-
ment materials on soil (Li et al. 2018). It is influenced 
by the type of reinforcement material, the particle size 
distribution of the soil, and the contact points between the 
reinforcement and soil (Fakhrabadi et al. 2021; Xu et al. 

Fig. 4  Interface shear strength 
of GDL + sand structure at 
different sand layer thicknesses: 
(a) Shear strength envelopes; 
(b) Shear strength parameters
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2023; Hassan et al. 2023). A higher sand layer compaction degree results in more intense interface interactions and, 

Fig. 5  Interface shear curves 
of GDL + sand structure under 
different sand layer compac-
tion degrees: (a) Dr = 85%; (b) 
Dr = 90%; (c) Dr = 95%

0 10 20 300

20

40

60

80

S
h

ea
r 

st
re

ss
 (

k
P

a)

Shear displacement (mm)

Dr = 85%

H = 10 mm

 σ = 100 kPa

 σ = 150 kPa

 σ = 25 kPa

 σ = 50 kPa

0 10 20 30
0

20

40

60

80

 σ = 25 kPa

 σ = 50 kPa

S
h

ea
r 

st
re

ss
 (

k
P

a)

Shear displacement (mm)

Dr = 90%

H = 10 mm

 σ = 100 kPa

 σ = 150 kPa

(a)                                                                                     (b) 

0 10 20 30
0

30

60

90
S

h
ea

r 
st

re
ss

 (
k

P
a)

Shear displacement (mm)

Dr = 95%

H = 10 mm

 σ = 25 kPa

 σ = 50 kPa

 σ = 100 kPa

 σ = 150 kPa

      (c) 

Fig. 6  Interface shear strength 
at different sand layer compac-
tion degrees: (a) Shear strength 
envelopes; (b) Shear strength 
parameters
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therefore, higher interface cohesion (Anda et al. 2023).

Comparisons of different reinforced 
structures in improving shear strength 
of clay layer

Interface friction coefficient of GDL + sand layer

The interface friction coefficient, defined as the ratio of 
the peak shear stress to the normal stress of the reinforce-
ment-soil composite, is a comprehensive strength param-
eter reflecting the friction effect between the reinforcement 
and soil (Gao et al. 2021; Xu et al. 2022; Chen et al. 2022; 
Bai et al. 2022). Unlike the traditional friction coefficient 
expressed solely by an internal friction angle (Gao et al. 
2021), the interface friction coefficient serves as an index to 
evaluate the friction characteristics of different reinforced 
soil interfaces. It can be calculated as follows:

where f* is the interface friction coefficient, σn is the normal 
stress, and τsg is the interface shear stress corresponding to 
σn.

Figure 7 depicts the influence of the thickness and com-
paction degree of sand layer on the interface friction coef-
ficient of the GDL + sand structure. As shown in Fig. 7(a), 
the interface friction coefficient increased with sand layer 
thickness at a given normal stress, with the upward trend 
transitioning from steep to more gradual. For example, 
f* increased from 0.26 to 0.43 as the sand layer thickness 
increased from 0 to 10 mm, then remained nearly unchanged 
as the sand layer thickness further increased to 14 mm.

This observation aligns with the variations in interface 
shear strength with sand layer thickness. It is primarily 

(1)f ∗ =
�sg

�n

attributed to the fact that the optimal sand layer thick-
ness is achieved at 10 mm. The sand layer is most effec-
tive in terms of reinforcement at this point; beyond 10 
mm, increases in sand layer thickness do not effectively 
enhance the interface shear strength. Figure 7(b) shows 
that the interface friction coefficient increased linearly as 
the sand layer compaction degree increased at a given nor-
mal stress. The linear-regression analysis results indicate 
a close increase rate for various cases at different normal 
stresses, ranging from 0.013 to 0.016.

Fig. 7  Variations in interface 
friction coefficient with dif-
ferent factors: (a) Sand layer 
thickness at Dr = 85%; (b) Sand 
layer compaction degree at 
H = 10 mm
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Comparison of interface friction coefficient 
for different reinforced structures

Figure 8 presents a comparison of interface friction coeffi-
cients among three structures: geogrid + sand, GDL + sand, 
and GDL. Direct shear tests on the geogrid + sand structure 
and GDL structure were also conducted. The same sand and 
clay were used in these tests as in the GDL + sand struc-
ture, with a polypropylene biaxially oriented geogrid (model 
TGSG15-15) adopted in the geogrid + sand structure. The 
tests were conducted at different clay layer consolidation 
degrees for the GDL structure, with a sand layer thickness of 
10 mm, sand layer compaction degree of 85%, and clay layer 
consolidation degree of 90% for the geogrid + sand structure.

Overall, the interface friction coefficient decreased with 
increasing normal stress, and the downward trend transi-
tioned from steep to gradual. Equation (1) can be rewritten 
accordingly as f* = tanφ + c/σ, where φ and c refer to the 
interface friction angle and interface cohesion, respectively. 
Evidently, f* tends toward the value of tanφ, i.e., f*lim = tanφ.

For clay reinforced with GDL, the decreasing rate of 
interface friction coefficient tended to be smaller and the 
value of f*lim tended to be larger as the clay layer consolida-
tion degree increased. This is mainly because an increase 
in the interface friction angle and decrease in the interface 
cohesion decreases occurred as the consolidation degree of 
the clay layer increased (Qian 2021).

Figure 8 illustrates where the interface friction coefficient 
of the GDL structure is smaller than that of the GDL + sand 
structure regardless of the clay layer consolidation degree 
(U) under a given normal stress. This suggests that intro-
ducing a sand layer between the clay and GDL effectively 
enhances the interface shear strength. In this text, a portion 
of the sand (replacing the clay) became embedded in the 
grooves of the GDL, establishing a robust bonding relation-
ship at the GDL-sand interface. Additionally, Fig. 8 shows 
where the interface friction coefficient of the geogrid + sand 
structure generally exceeded that of the GDL + sand 
structure.

Liu et al. (2017) and Abdi et al. (2009b) conducted inter-
face shear tests on a geogrid + sand structure, which exhib-
ited similar interface friction coefficients as in the present 
study, although the properties of the sand used in these 
experiments differ. This can be attributed to the fact that 
grid-type reinforcements are more effective than sheet-type 
reinforcements due to the interlocking effect of sand within 
grid openings (Unnikrishnan et al. 2002).

In summary, the interface friction coefficients for the 
three reinforced structures at a consistent normal stress can 
be ranked as geogrid + sand > GDL + sand > GDL. When 
only considering the reinforcement effect, the geogrid + sand 
structure is the optimal choice for fine-grained soil dump 
applications. However, the fine-grained soil particles would 

either fill into the spaces between sand particles or flow 
away with drainage under water infiltration conditions. As a 
result, the drainage function of the geogrid + sand structure 
may weaken significantly due to clogging (Cao et al. 2021). 
Fine-grained soils are also susceptible to tension cracks, and 
the differential deformation of these soils may cause discon-
nection of the sand layer, hindering effective drainage in the 
geogrid + sand structure. GDL consists of a drainage core 
with two nonwoven geotextiles firmly bonded on the top and 
bottom. This drainage core creates a seepage path, which is 
kept unclogged by the nonwoven geotextiles (Kalore and 
Babu 2023). Therefore, the GDL structure can mitigate the 
aforementioned issues through its geogrid + sand structure. 
Furthermore, a thin sand layer on both sides of GDL appears 
to be effective in improving the shear strength of reinforced 
clay (Yang et al. 2016). Therefore, the GDL + sand structure 
is an effective, practical solution in fine-grained soil dumps.

Conclusions

In this study, the effects of sand layer thickness and compac-
tion degree on the interface shear behavior of a GDL + sand 
structure were investigated through two sets of direct shear 
tests. The effectiveness and efficiency of three reinforced 
structures (geogrid + sand, GDL + sand, and GDL) were 
examined according to the interface friction coefficient 
index. The key findings of this work can be summarized 
as follows:

(1) The interface shear curve of the GDL + sand structure 
exhibited typical hardening behavior. The interface 
shear stress increased with increasing normal stress at 
a given shear displacement and sand layer thickness/
compaction degree. This behavior can be attributed to 
increased interface friction resistance at larger normal 
stress, limited mutual particle adjustment, and strength-
ened occlusal action.

(2) Increasing the sand layer thickness from 0 to 10 mm 
caused an increase in the interface shear strength of 
the GDL + sand structure at a given normal stress. This 
is mainly due to the interface friction angle, which 
increased from 12.08 to 21.78; the decrease in interface 
cohesion from 5.95 to 4.44 kPa had a less pronounced 
effect. As the sand layer thickness further increased to 
14 mm, the interface shear strength stabilized alongside 
a further slight increase in the interface friction angle to 
21.99° and continuous decline in interface cohesion to 
4.05 kPa. The optimal sand layer thickness for achiev-
ing the optimal reinforcement of clay in this study was 
identified at 10 mm for the GDL + sand structure.
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(3) The interface shear strength of the GDL + sand struc-
ture increased as the sand layer compaction degree 
increased under a given normal stress. When the com-
paction degree increased from 85 to 95%, the interface 
friction angle increased from 21.78° to 28.12°, while 
the interface cohesion increased from 4.44 to 5.06 kPa. 
This is mainly related to the increased interface friction 
resistance caused by the more compact arrangement of 
sand particles and an augmented effective contact area.

(4) The interface friction coefficient increased, first sharply 
and then slowly, with increasing sand layer thickness 
under a given normal stress. This is consistent with 
the changes in interface shear strength. However, it 
increased approximately linearly with the sand layer 
compaction degree between 0.013 and 0.016. The inter-
face friction coefficient decreased, steeply then slowly, 
with normal stress and tended toward the value of tanφ.

(5) The interface friction coefficients for the three rein-
forced structures at a given normal stress fall into 
order as: geogrid + sand > GDL + sand > GDL. When 
applied in fine-grained soil dumps, the geogrid + sand 
structure is prone to clogging or fracture under water 
infiltration conditions due to the migration of fine par-
ticles, significantly reducing the drainage efficiency. In 
contrast, GDL can provide complete seepage paths via 
its drainage core and protect the seepage path against 
clogging via nonwoven geotextiles. Consequently, the 
GDL + sand structure is recommended as an optimal 
practical solution to improve the drainage capacity and 
shear strength of fine-grained soil dumps.

This study has limitations that may be addressed in future 
research efforts. Firstly, the findings obtained here are based 
on the behavior of excavated clay combined with a sand layer 
of optimal thickness. It is important to note that variations in 
soil type and the characteristics of the sand and GDL could 
lead to different shear behaviors at the GDL-sand interface, 
thus altering the optimal thickness of the sand layer. Sec-
ondly, environmental factors like rainfall infiltration, seismic 
activity, drying-wetting cycles, and freeze–thaw cycles are 
likely to significantly impact the interface shear behavior of 
the GDL + sand structure. The research team plans to inves-
tigate these factors in upcoming studies.
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