Evaluation of Dibutyltin and Monobutyltin Leaching from PVC pipe: A Bench and Pilot Scale Approach

by

Patrick Michael Henry Tyrrell

A thesis submitted in conformity with the requirements for the degree of Master of Applied Science

> Graduate Department Civil Engineering University of Toronto

© Copyright by Patrick Michael Henry Tyrrell 2024

Evaluation of Dibutyltin and Monobutyltin Leaching from PVC pipe: A Bench and Pilot Scale Approach

Patrick Michael Henry Tyrrell

Master of Applied Science

Graduate Department Civil Engineering University of Toronto 2024

Abstract

Bench scale pipe-section reactors (PSRs) along with pilot scale pipe-loops were used to examine the leaching of toxic dibutyltin (DBT) and monobutyltin (MBT) heat stabilizers which are commonly used in drinking water distribution systems across North America from C900 and C909 PVC pipe. PSR trials were conducted using artificial freshwater containing up to 4 mg/L free chlorine, as typically employed for drinking water distribution. Pipe-loops located onsite at a water treatment facility continuously received chloraminated water. MBT was observed above the detection limit only during the first 24 hours of the PSR trial, with the presence of chlorine showing a positive impact on leaching. Pipe-loop and PSR results did not show DBT above the detection limits during the trials. These findings suggest that DBT leaching from C909 and C900 PVC pipes within a typical drinking water distribution system should not pose a concern to consumers.

Acknowledgements

This work was funded by the Natural Sciences and Engineering Research Council of Canada (NSERC) Chair in Drinking Water Research at the University of Toronto.

I would like to thank my supervisor Dr. R. C. Andrews for your guidance, support, and insight. To Dr. H Almuhtaram thank you for your guidance and assistance in my research. And to Juan Li for your assistance and input into this project.

I would like to thank Jim Wang and Alan McClenaghan for your help and guidance in the lab at UofT. To the City of Toronto staff, Patrick Onyia for coordinating with the City, Aman Bal for coordinating plant staff, and to David Collins for fabricating the necessary headworks for our pilot and your continued assistance with the pilot system.

Finally, I would like to thank Iain Cameron for your friendship and electrical assistance, my Grandfather Tom Smyth for supplying me with most of my tools, and special thanks to my Father John Tyrrell, the engineer who I aspire to be, who I can always count on for support.

TABLE OF CONTENTS

Abstract	i
Acknowledgements	ii
LIST OF TABLES	V
LIST OF FIGURES	vi
LIST OF APPENDICES	vii
NOMENCLATURE	viii
1. Introduction	1
2. Materials and Methods	6
2.1 Test Pipes	6
2.2 Pipe-Loop Design	6
2.3 PSR Design	
2.4 Sampling Methods	11
2.5 Analytical Methods	12
3. Results and Discussion	14
3.1 PSR Trials	14
3.2 Chloramine Decay in Pipe-Loops	15
3.3 Pipe-Loop Leaching Trials	16

4.	Summary	18
5.	References	19
6.	Appendices	25

LIST OF TABLES

Table 1-1. Experimental conditions of prior pipe-loop and pipe-section reactor (PSR) organotin	
leaching studies	. 4
Table 2-1. Polyvinyl chloride (PVC) pipe usage for Town/Region A-F	.7
Table 6-1. Pipe-loop total chlorine, pH and temperature 2	26
Table 6-2. First order total chlorine decay coefficients for individual C909 and C900 pipe-loops	
	27
Table 6-3. Reduction of chlorine demand within pipe section reactor (PSR) prior to use	30
Table 6-4. Preparation of artificial freshwater (AFW) for PSR trials	31
Table 6-5. Preparation of pH 8 sodium phosphate buffer (0.1 M)	31
Table 6-6. Preparation of chlorine solution	32
Table 6-7. Preparation of 5% NaBEt4 solution	32

LIST OF FIGURES

Figure 2-1.	Blank MBT and DBT leaching trial pipe-loop schematic.	.9
Figure 2-2.	MBT and DBT leaching trial pipe-loop schematic.	.9
Figure 2-3.	Schematic of PSR.	11
Figure 3-1	. DBT (A) and MBT (B) leaching as a function of time using PSRs for C900 and	
	C909 pipes	15
Figure 3-2.	Total chlorine concentration (A), and first order chlorine decay (B) as a function of	
	time for duplicate C909 and C900 pipe-loops.	16
Figure 3-3.	DBT (A) and MBT (B) leaching as a function of time for C900 and C909 pipe using	
	pipe-loops	17
Figure 6-1.	First MBT (A) and DBT (B) calibration curves	25
Figure 6-2.	Second MBT (A) and DBT (B) calibration curves.	25
Figure 6-3.	Total chlorine concentration (A), and first order chlorine decay (B) as a function of	
	time for individual C909 and C900 pipe-loops	27
Figure 6-4.	MBT concentration as a function of time for harvested CLDI pipes	29
Figure 6-5	Influent sampling point locations; 1 – source water, 2 – treated water, 3 – influent	
	header, 4 – pipe-loop influent tubing effluent	29
Figure 6-6.	Influent MBT concentrations.	30

LIST OF APPENDICES

Appendix A. Calibration Curves	
Appendix B. Water Quality Data	
Appendix C. Pipe-Loop Blank and Influent Data	
Appendix D. Standard Operating Procedures	
Appendix E. Pipe Loop Expansion Drawings	

vii

NOMENCLATURE

**	Inch
%	Percent
>	Greater than
<	Less than
\geq	Greater than or equal to
±	Plus/minus
А	Area
AFW	Artificial Freshwater
ASTM	American Society for Testing and Materials
AWWA	American Water Works Association
С	Degrees Celsius
°C/min	Degrees Celsius per min
cm	Centimetre
CPVC	Chlorinated Polyvinyl Chloride
DBT	Dibutyltin
DI	De-ionized
DMT	Dimethyltin
DO	Dissolved Oxygen
DOT	Dioctyltin
EI	Electron Ionization
EPA	Environmental Protection Agency
eV	Electron Volt
g	Gram
GCMS	Gas Chromatography - Mass Spectrometry
h	Hour
HRT	Hydraulic Retention Time
L	Litre
m	Metre
М	Molarity
m(t)	Organotin leaching rate at time t
m/s	Metre per second
m/z	Mass to charge ratio
m ²	Metre squared
m^2/m^3	Metre squared per metre cubed
m ³	Metre cubed