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Abstract: As an important construction material, the mechanical and deformation properties of
marine coral sand determine the safety and stability of related island and coastal engineering con-
struction. The porous and easily broken characteristics of coral sand often make it difficult to meet
engineering construction needs. In particular, coral sand undergoes a large amount of particle break-
age under high-stress conditions, which in turn negatively affects its mechanical and deformation
properties. In this study, the macro- and micro-mechanical behavior of geosynthetic-reinforced coral
sand under high confining pressure was investigated and compared with unreinforced cases using
the three-dimensional discrete element method (DEM), which was verified by indoor triaxial tests.
The results showed that the stress–strain responses of unreinforced and reinforced coral sand under
high confining pressure showed completely different trends, i.e., the hardening tendency shown in
the reinforced case. Geosynthetic reinforcement can significantly inhibit the stress–strain softening
and bulging deformation of coral sand under high confining pressure, thus improving the shear
mechanical performance of the reinforced sample. At the microscopic scale, high confining pressure
and reinforcement affected the contact force distribution pattern and stress level between particles,
determining the macroscopic mechanical and deformation performance. In addition, the breakage
of particles under high confining pressure was mainly affected by shear strain and reinforcement.
The particle fragment distribution, particle gradation, and relative breakage index exhibited different
trends at different confining pressure levels. These breakage characteristics were closely related to
the deformation and stress levels of unreinforced and reinforced samples.

Keywords: marine coral sand; triaxial test; DEM simulation; high confining pressure; shear mechanical
behavior; particle breakage

1. Introduction

With the development and utilization of the oceans, a large number of islands and coastal
infrastructures have been built on sites with coral sand as the core filler [1,2], especially in
tropical and subtropical regions. Coral sand is a special calcareous sand formed by the remains
of marine organisms over a long period of evolution. The main component of coral sand is
calcium carbonate, which usually contains a large number of pores [3]. Due to the abundance
of marine organism remains, the physical properties of coral sands formed, such as shape,
angularity, porosity, hardness, etc., show some variability, making its mechanical properties
more complex than those of standard quartz sands [1,4]. Coral sands are also subject to granular
breakage under high stress, leading to alterations in the gradation characteristics [4–6] and the
corresponding mechanical properties. Attention to the mechanical properties of coral sands in
the construction of islands and marine projects is essential for the safety of the superstructures
and adjacent infrastructures.
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In recent years, the mechanical and bearing behavior of coral sands received widespread
attention as a series of engineering projects advanced in areas where coral sands are widely
distributed [7–9]. A series of experimental [4,6,10,11], numerical [12–14], and theoretical
studies [10,15,16] have focused on the basic mechanical properties of coral sands in an
attempt to reveal their special characteristics. Since multi-angularity and particle breakage
are typical characteristics of coral sands [6,10,17], exploring angular properties and particle
breakage is an important aspect of understanding the mechanical and bearing behavior
of coral sands. Several recent studies showed that the angular and breakage properties of
coral sand play opposite roles in the mechanical behavior [12,13,18]. This is manifested by
the fact that angular properties favor the enhancement of inter-particle occlusion, which in
turn contributes positively to shear strength. However, particle breakage, in turn, disrupts
the inter-granular occlusion, resulting in stress release, which in turn leads to a reduction
in the shear strength. This opposite action complicates the mechanical behavior of coral
sand and is not conducive to the needs of current engineering and construction.

To reduce the influence of undesirable properties, such as low hardness, porosity, and
particle breakage, on the shear mechanical behavior of coral sands, a series of reinforce-
ment methods to enhance the stability of coral sands are the focus of current research,
such as cement-curing technology [19,20], bio-curing technology [21,22], and geosynthetic
reinforcement technology [23–26]. Among them, geosynthetic reinforcement technology,
which is less polluting to the marine environment and has significant advantages, such
as low cost and high efficiency, is a potential method for the future reinforcement of large
coral sand sites and geotechnical structures [27–29]. Ding et al. [30] investigated the shear
behaviors of unreinforced and geosynthetic-reinforced coral sands based on an indoor
triaxial test, and the results showed that reinforcement can significantly improve the me-
chanical and deformation properties of coral sands. In addition, a series of experimental
and numerical studies related to coral sand reinforced with geosynthetics were carried
out to compare important aspects, such as shear strength [23,25], deformation [30–32],
liquefaction resistance [24,27], and bearing capacity, before and after reinforcement [31].
These studies provided valuable insights for the construction of island and coastal projects.
Nevertheless, most of the performed triaxial tests have focused on confining pressures
below 400 kPa [30,33,34], and little attention is given to the shear mechanical behavior of
unreinforced and reinforced coral sands under high confining pressures. The degree of
breakage of coral sand will be increased under high confining pressure, and its interaction
with geosynthetics and the effect of reinforcement may undergo new changes. Therefore,
conducting investigations under high confining pressure levels is necessary to enhance the
current understanding of the shear mechanical behavior of unreinforced and reinforced
coral sands.

Considering that recent studies on reinforced coral sands have mainly focused on con-
fining stresses up to 400 kPa, the mechanical behavior at higher stresses is still unclear. To
investigate the macro/micro-shear mechanical behavior of unreinforced and reinforced coral
sands at higher stress levels, triaxial shear investigations in the range of 400 kPa~1600 kPa
confining pressure are carried out in this study using the validated DEM method. Mechan-
ical and deformation analyses at the macro and micro levels are performed to reveal the
shearing mechanisms of high confining pressure levels and geosynthetic reinforcement on
coral sands. The stress–strain response, shear strength, shear mechanical parameters, failure
patterns, microscopic contact force characteristics, and particle fragmentation distributions of
unreinforced and reinforced coral sands are also evaluated in detail. Further, the potential
connection between the macroscopic mechanical response and the microscopic stresses and
particle fragmentation is also revealed under high confining pressures.

2. Materials and Methods
2.1. Geologic Background and Lithologic Characteristics of Marine Coral Sands

Tropical and subtropical seas between 30 degrees south and 30 degrees north latitude
of the Earth harbor a large number of coral-like organisms. These marine organisms
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reproduce rapidly, and over tens of thousands of years of evolution, their remains are
deposited on the seafloor, gradually accumulating to form calcareous cement. Its main
components are the less stable aragonite and calcite, and the content of quartz is usually
less than 10%. The composition of this mineral results in low mechanical strength and
particle hardness. In recent years, with the construction of oceanic island projects, the
calcareous aggregates deposited on the seafloor have been hydraulically blown onto the
islands and reefs as important foundation materials. Typically, the fill material for island
reef sites is coral sand with smaller particles.

Coral sand is formed through the long-term evolution of the remains of marine
organisms. Its calcium carbonate content is usually above 80% and even exceeds 90%.
Thus, the main mineral components of coral sand particles are aragonite and calcite. Due
to the long-term effects of the marine environment, the coral sand particles have many
pores and corners, and their shape is irregular. Figure 1 shows the coral sand used in
the indoor triaxial test [30], with a gradation of 0–2 mm. Tests showed that the specific
gravity of coral sand was 2.78, and the porosity ratio ranged from 0.79 to 1.24. As shown in
Figure 1b, the abundant corners made the interlocking of the coral sand particles prominent,
which further complicated its mechanical properties [35,36]. In addition, due to the low
hardness of coral sand, the irregular particle shape and internal pores further increased
the possibility of stress concentration [37]. Therefore, coral sand particles often undergo
significant particle breakage under high-stress levels. After basic particle shape testing, the
sphericity of the planar image of coral sand particles was significantly lower than that of
standard sand, mainly ranging from 0.2 to 0.8. Among them, the strip (branch) particles
had the lowest sphericity, mainly below 0.5. Particle breakage was not only related to
stress, but also closely related to shear strain and particle properties. Currently, the particle
breakage of coral sand is a point of concern.
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Figure 1. Shape characteristics of coral sand particles: (a) coral sand from the South China Sea, and
(b) angularity and porosity characteristics.

To further explore the effect of high confining levels on the shear mechanical behavior
of unreinforced and reinforced coral sand, the DEM method was used to simulate the
behavior of coral sand particles. Considering that abundant corners and fragmentation are
basic properties of coral sand particles, the sand particles were constructed based on the
method of breakable cemented particles, and the specific technical details are consistent
with the research carried out by Luo et al. [12] and Peng et al. [18]. According to the
proportion characteristics of real coral sand in Figure 1, a 4:1 relationship was employed
to determine the sizes of the host particles and angular particles. The specific particle
geometric characteristics and contact model are shown in Figure 2. The angular particles
were symmetrically distributed at the four vertices of a regular tetrahedron and were
bonded to the host particles by a parallel bond model [38]. Once the stress between the
particles exceeded the allowable bond strength, the bond between the host particles and
the angular particles broke, and the angular particles fell off. The broken particles were
filled into the pores as small particles using a linear model. Such DEM simulations can
reflect the breakage of coral sand particles and the impact on the grading curve. In the
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DEM simulation, the particle size distribution (PSD) was modified according to the actual
grading of the triaxial test [30] in the laboratory and enlarged to the range of 1–3 mm.
Research conducted by Wang et al. [39] indicated that the use of grading modification and
size enlargement techniques can achieve the simulation of the basic mechanical properties
of soil while ensuring computational efficiency.
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DEM particle, (b) linear contact model, and (c) linear parallel bonding model.

2.2. Overview of Triaxial Tests and DEM Simulations

A DEM model verified by the triaxial test was used to conduct the numerical simula-
tion. In the indoor triaxial test [30], the diameter and height of the specimen were 80 mm
and 39.1 mm, respectively. To reflect the physical laws in the test, a triaxial DEM specimen
of the same size was constructed, with a total number of particles exceeding 100,000. In
order to ensure the efficiency of calculation, the particle size in DEM was 1 mm~3 mm,
which was obtained by adjusting and enlarging according to the grading characteristics in
the test. The relative densities of the experimental and numerical soil samples were kept
essentially the same to avoid the effect of densification differences on shear behavior. The
characteristics of the specimen in the test and the numerical test are shown in Figure 3.
In this case, the three layers of the geogrid remained evenly distributed in the reinforced
specimen. The geogrid was constructed from a series of 2 mm-diameter spherical particles
and was given its tensile strength by a parallel bonding model. In the DEM simulation, the
compaction conditions of the specimen were consistent with the laboratory triaxial test,
and the test procedures were carried out in sequence, including equilibrium, consolidation,
and loading. The maximum axial strain during loading was 20%. After loading, the stress–
strain relationship was obtained using a monitoring program. For deviatoric stress–strain
curves without significant peaks, the stress corresponding to 15% strain was regarded as
the shear strength. In the linear contact model, the normal/shear stiffness of the geogrid
and coral sand was 2 × 108 N/m. In the parallel bonding model, the normal/shear stiffness
of the geogrid and coral sand was 2 × 108 N/m3 and 5 × 108 N/m3, respectively, and their
bonding strengths were 1 × 109 Pa and 9 × 109 Pa, respectively. To ensure the validity of
the numerical simulation, the triaxial test and DEM simulation were verified in terms of
stress–strain, particle breakage, and failure patterns of the specimen. The results of the
validation showed that the method was effective for simulating the shear mechanical be-
havior of unreinforced and reinforced coral sand. The specific determination of microscopic
contact parameters and model validation refers to the research carried out by Luo et al. [12].
The validated numerical model can be used to further carry out macro/microscopic shear
mechanical analysis of unreinforced and reinforced coral sand at high-stress levels.
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simulation.

2.3. DEM Investigation Arrangements

Further triaxial tests were simulated at high-stress levels, based on the experimental
validated DEM model and parameters. As the previous studies [12] presented involved
low confining stress (100 kPa~400 kPa), the current study focused on revealing the shear
mechanical behavior of unreinforced and reinforced coral sand at high confining pressures
(400 kPa~1600 kPa). The specific investigation arrangements are shown in Table 1. Carrying
out investigations at high-stress levels made it possible to compare the results with those
obtained at lower stress levels, focusing on the influence of the stress level. In addition, the
breakage of coral sand particles was significantly more pronounced at high-stress levels,
and the distribution pattern of the particle fragments and their influence on the mechanical
behavior were also areas of interest.

Table 1. The scheme of the DEM investigation.

Serial Number Cell Pressures (kPa) Number of Geogrids Sources

U1 400 0 Luo et al. [12]
U2 800 0 Current study
U3 1200 0 Current study
U4 1600 0 Current study
R1 400 3 Luo et al. [12]
R2 800 3 Current study
R3 1200 3 Current study
R4 1600 3 Current study
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3. Results
3.1. Effect of Confining Pressure on Failure Patterns

The level of confining pressure exerted a significant effect on the failure deformation
characteristics of unreinforced and reinforced coral sand specimens. Figure 4 presents the
shear deformation and particle displacement of the specimens at 20% axial strain. Three
characteristic confining pressures (400 kPa, 800 kPa, and 1600 kPa) were considered to
reveal the effect of reinforcement and stress levels on the failure characteristics. In the
unreinforced condition (Figure 4a), the failure specimen bulged in the middle, and the par-
ticle displacements at the ends were larger. The failure pattern of the specimens remained
unchanged as the confining pressure continued to increase, but the particle displacement
in the middle of the specimens tended to decrease at high confining pressures. In the three-
layer-reinforced condition (Figure 4b), the failure pattern of the specimens differed from
that of the unreinforced condition. The particles in the middle of the reinforced specimens
were constrained by the geogrid, and the particle displacement was significantly smaller
than that of the unreinforced condition. In addition, the tendency of bulging in the middle
of the reinforced specimens was reduced relative to the unreinforced condition. At 400 kPa,
the deformation in the middle of the reinforced specimens was obviously suppressed, but
the bulging deformation at the ends seemed to be more obvious. With the increase in
the confining pressure to 1600 kPa, the end deformation of the reinforced specimens was
also suppressed, and the bulging deformation of the specimens after failure was relatively
low. The failure characteristics presented by the unreinforced and reinforced specimens at
different confining pressures indicated that the reinforcement and high confining stresses
can significantly inhibit the bulging deformation, especially the significant inhibition of the
particle displacement in the central region.
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3.2. Deviatoric Stress–Axial Strain Responses

The reinforced condition and high confining stresses influenced the failure charac-
teristics of the specimens and further determined their shear mechanical response. The
deviatoric stress–axial strain curves for the unreinforced and reinforced conditions are
presented in Figure 5. The deviatoric stress–axial strain curves of the unreinforced coral
sand showed a peak with the increased confining pressure. Under the 400 kPa confining
pressure, the deviatoric stress entered the plateau at 10% axial strain, with no obvious
peak. With the increase in the confining pressure to 800 kPa~1600 kPa, the deviatoric stress
peaked at 11~12% axial strain, and the softening tendency after the peak increased with the
increased confining pressure. For the reinforced specimens, the pattern of the deviatoric
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stress–axial strain curve is varied with the increased confining pressure. The deviatoric
stress–axial strain curves showed a plateau pattern or a slight hardening trend at 400 kPa
to 1600 kPa. In addition, the strength of the reinforced specimens was also higher than that
of the unreinforced specimens, but the enhancement was not obvious at high confining
pressures. The reinforcement greatly improved the mechanical properties of the specimens
while suppressing the bulging deformation, especially the suppression of the softening
trend of the deviatoric stress–axial strain curve.
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Figure 5. Effect of high confining pressure on deviatoric stress–axial strain curves: (a) unreinforced
case and (b) reinforcement.

3.3. Shear Strength and Parameters

According to the deviatoric stress–axial strain curves, the shear strengths of the unre-
inforced and reinforced specimens, expressed in terms of large principal stresses, could be
obtained. As shown in Figure 6, the difference in shear strength between the reinforced
and unreinforced specimens under 400 kPa to 1600 kPa confining pressure was relatively
small, and it was maintained at about 500 kPa. Obviously, the high confining pressure
stress did not stimulate the reinforcing effect of the geogrid. Under high confining stresses,
the occlusion between particles was intensified, and the inter-particle skeleton was the
main source of strength. Due to the limited tensile strength of geogrids, even though the
geogrid–particle interlocking was enhanced under high stresses, it did not substantially
increase the shear strength. Overall, the shear strengths of unreinforced and reinforced
specimens under 400 kPa to 1600 kPa confining pressure mainly ranged between around
2 MPa and 8 Mpa.
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Figure 6. Effect of high confining pressure on the shear strength: (a) unreinforced case and
(b) reinforcement.
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Despite the relatively limited shear strength induced by reinforcement at high confining
pressure conditions, the effect of reinforcement on the shear mechanical parameters was
of interest, especially its difference from that at low confining pressure conditions. For
shear strength values in a certain range of confining pressures, they can be expressed by the
relationship between the major and minor principal stresses in the limit equilibrium condition:

σ1 = σ3 tan2(45◦ + φ/2) + 2cp tan(45◦ + φ/2) (1)

where σ1 is the large principal stress, which is equal to the sum of the confining pressure and
the deviatoric stress, σ3 is the small principal stress, i.e., equal to the confining pressure, and
the parameters cp and φ are the pseudo-cohesion and the internal friction angle, respectively.
The intercept I and slope K were obtained by linear fitting of σ1 and σ3 under different
confining pressures. Further, the shear mechanical parameters can be calculated based on
the following equations [25]:

cp =
I

2
√

K
(2)

φ = 2(arctan
√

K − 45◦) (3)

The shear parameters of the reinforced specimens at 400 kPa to 1600 kPa confining
pressure were obtained and compared with the results presented by Luo et al. [12] at
a low confining pressure (Figure 7). The results showed that the high confining stress
affected the internal friction angle of the reinforced coral sand very little, but significantly
increased its pseudo-cohesion. Compared with the 100 kPa~400 kPa confining pressure, the
internal friction angle only increased by 0.07◦ at the high confining pressure from 400 kPa
to 1600 kPa, which remained almost constant. On the contrary, the pseudo-cohesion under
high confining pressure increased by 78.4 kPa compared to that under 100 kPa to 400 kPa
confining pressures. It should be noted that the increment of pseudo-cohesion under high
confining stress was not entirely the contribution of the geosynthetics, but also related
to the enhancement of the occlusion between coral sand particles. At high-stress levels,
pseudo-cohesion may be significantly elevated, and this effect was especially pronounced
for coral sand particles considering their abundant angularity.
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4. Discussion
4.1. Patterns of Inter-Particle Contact Forces

The macroscopic mechanical response is related to the microscopic particle interaction.
To further investigate the shear strength mechanism of unreinforced and reinforced spec-
imens under high confining stress, the microscopic contact force chain was analyzed, as
shown in Figure 8. The contact force level of the specimens was significantly enhanced with
the increase in the confining pressure. At the same confining pressure, the contact force
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level of the reinforced specimens was significantly higher than that of the unreinforced
specimens. Due to the effect of the geosynthetics, the force chain of the core bearing was
distributed in a columnar shape along the central axis of the specimen. On the contrary,
the force chains of the unreinforced specimens were distributed more uniformly, including
the contact force chains with higher forces. The interlocking effect of the geogrid enhanced
the contact stresses of the particles, which in turn led to higher stress levels between the
reinforced layers [30]. Since the geogrids can resist the action of the principal stresses, they
in turn can mitigate the stress level in the edge region of the specimen. For the unreinforced
specimen, the bearing of the specimen was mainly dependent on the inter-granular skele-
ton, and the stress distribution was more uniform throughout the specimen. Essentially,
reinforcement altered the stress distribution pattern of the specimen, and this difference
was amplified as the confining stress increased.
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4.2. Tensile Force Chains of Geogrids

For the reinforced specimens under high confining stress, the distribution patterns of
the microscopic contact force and the macroscopic shear mechanical behavior were mainly
affected by the geosynthetics. As a reinforced material, the geogrid resisted the large
principal stresses during shear by tension resistance. The degree of geogrid tensioning was
closely related to the reinforcing effect. Figure 9 presents the microscopic tensile chain of
the geogrids under different confining pressures and shear strains. The overall trend was
that the tensile force of the geogrids increased with the increasing confining pressure and
shear strain. At 6% axial strain (Figure 9a), the effect of a high confining pressure on the
tensile force of the geogrid was limited, and the level of tensile force of the geogrid under
the confining pressure of 400 kPa~1600 kPa was comparable and mainly lower than 0.1 kN.
When the axial strain was increased to 14% (Figure 9b), the tensile force of the geogrid
showed a slight increasing trend with the increase in the confining pressure. Meanwhile,
the tensile force at most locations of the geogrid reached 0.1 kN under 400 kPa~1600 kPa
confining pressure, and the tensile effect of the geogrid began to play a reinforcing role. At
the end of shear (Figure 9c), the tensile force of the geogrids increased significantly with
the increase in the confining pressure, especially as the tensile force of the geogrids reached
more than 0.2 kN at 1600 kPa. In addition, the tensile force of different geogrid layers under
this shear strain was not consistent, showing that the middle layer was more obviously
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subjected to tension, especially for the high confining pressure condition (e.g., 1600 kPa).
The contribution of reinforcement to shear strength and deformation can be indirectly
characterized by the tensile force of the geogrid. Higher geogrid tension resistance provided
stronger resistance to large principal stresses and bulging deformations, and thus the effect
of reinforcement was more prominent. Nevertheless, the contribution of reinforcement to
shear strength was relatively low for high-stress conditions, thus presenting the strength
law shown in Figure 6. For high-stress conditions, increasing the tensile strength of the
geosynthetics may be the way to substantially increase the shear strength and resistance to
deformation of the reinforced coral sand.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 11 of 18 
 

 

 
Figure 9. Tensile force of geogrids under varied confining pressures and shear strains: (a) 6% strain, 
(b) 14% strain, and (c) 20% strain. 

4.3. Evolution of Particle Fragments 
Particle breakage is a fundamental property of coral sand, and it has a certain impact 

on stress and deformation behavior [4,9]. During the shearing process, particles under-
went a certain amount of particle breakage with the increasing shear strain and stress. 
Particle breakage under high stress was of concern. Figure 10 shows the particle fragment 
distributions of unreinforced and reinforced coral sands under different shear strains at a 
high confining pressure of 1600 kPa. Under both unreinforced and reinforced conditions, 
the particle fragments were mainly concentrated in the middle of the sample, with fewer 
distributed at the ends. For axial strains less than 10%, the number of particle fragments 
was relatively limited. After the axial strain exceeded 10%, the number of particle frag-
ments increased sharply. Overall, the number of particle fragments in the unreinforced 
specimen under high stress was slightly higher than that in the reinforced specimen, 
which is different from the rule under a low confining pressure. Under a confining pres-
sure of 1600 kPa, the degree of particle breakage was high and mostly concentrated in the 
middle area of the sample. However, the three-layer geogrid occupied a certain volume, 
resulting in a decrease in the number of particles in the middle area of the sample. In 
addition, the geogrid was relatively soft and highly ductile, and the number of crushed 
particles near the geogrid layer was even lower. This difference means that the number of 
particle fragments in the reinforced sample under high-stress conditions was slightly 
lower than that in the unreinforced sample. 

Figure 9. Tensile force of geogrids under varied confining pressures and shear strains: (a) 6% strain,
(b) 14% strain, and (c) 20% strain.

4.3. Evolution of Particle Fragments

Particle breakage is a fundamental property of coral sand, and it has a certain impact
on stress and deformation behavior [4,9]. During the shearing process, particles underwent
a certain amount of particle breakage with the increasing shear strain and stress. Particle
breakage under high stress was of concern. Figure 10 shows the particle fragment dis-
tributions of unreinforced and reinforced coral sands under different shear strains at a
high confining pressure of 1600 kPa. Under both unreinforced and reinforced conditions,
the particle fragments were mainly concentrated in the middle of the sample, with fewer
distributed at the ends. For axial strains less than 10%, the number of particle fragments
was relatively limited. After the axial strain exceeded 10%, the number of particle frag-
ments increased sharply. Overall, the number of particle fragments in the unreinforced
specimen under high stress was slightly higher than that in the reinforced specimen, which
is different from the rule under a low confining pressure. Under a confining pressure of
1600 kPa, the degree of particle breakage was high and mostly concentrated in the middle
area of the sample. However, the three-layer geogrid occupied a certain volume, resulting
in a decrease in the number of particles in the middle area of the sample. In addition, the
geogrid was relatively soft and highly ductile, and the number of crushed particles near the
geogrid layer was even lower. This difference means that the number of particle fragments
in the reinforced sample under high-stress conditions was slightly lower than that in the
unreinforced sample.
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In addition to shear strain, the confining pressure also largely influenced the final
particle fragment distribution of the unreinforced and reinforced samples (Figure 11). At
confining pressures of 400 kPa and 800 kPa, the number of particle fragments in the rein-
forced specimen was slightly greater than in the unreinforced specimen. As the confining
pressure reached 1200 kPa, the number of particle fragments in the unreinforced specimen
prevailed. As the confining pressure continued to increase, the rate of increase in particle
fragments began to decrease, especially in the reinforced specimen. The particle fragments
under a high confining pressure were more concentrated in the middle area of the sample,
while under a 400 kPa confining pressure, the particle fragments were relatively evenly
distributed. Compared with the sample under a 400 kPa confining pressure, the increase in
particle fragments under a high confining pressure mainly occurred in the central region of
the sample, which was related to the larger shear stress in this region. For example, the
contact force distribution pattern in Figure 8 shows that the contact force in the central
region of the sample under a high confining pressure was large. In addition, the bulging in
the central region of the sample will also lead to an increase in relative shear displacement
between particles in this region, which in turn makes particle breakage more likely to occur.

4.4. Gradation Curve After Crushing

Particle breakage led to changes in the initial grading curve, which in turn affected the
macroscopic mechanical behavior. To further reveal the characteristics of coral sand particles
under a high confining pressure, the particle size distribution of some representative samples
under different shear strains was statistically analyzed, and the results are shown in Figure 12.
Under confining pressures of 800 kPa and 1600 kPa, the PSD curves of the unreinforced and
reinforced samples were similar in pattern, and the degree of breakage was comparable. Particle
breakage increased with the increasing shear strain and confining pressure, as indicated by
the shift in the PSD curve. The core breakage zone occurred in the 0.5 mm to 1 mm range,
which was related to the initial angular structure of the particles. The initial particle corner
diameter was 1/4 of the host particle diameter, i.e., the maximum diameter of the corner was
less than 1 mm. Therefore, the gradation interval below 1 mm changed greatly when particle
breakage occurred. It should be noted that the actual distribution of coral sand particles and
corners was more complex, and the PSD after breakage may differ from the pattern in Figure 12.
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Nevertheless, Figure 12 shows the evolution of the gradation of unreinforced and reinforced
coral sand with axial strain under a high confining pressure, which is of great importance for
understanding the breakage behavior under a high confining pressure.
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Figure 12. Effects of high confining pressure and reinforcement on the particle size distribution:
(a) unreinforced case, c = 800 kPa, (b) unreinforced case, c = 1600 kPa, (c) reinforced case, c = 800 kPa,
and (d) reinforced case, c = 1600 kPa.
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4.5. Relative Breakage Index

The PSD curve can be used to quantitatively characterize the degree of particle size
reduction. Hardin [40] proposed the relative breakage index Br to characterize the degree
of breakage, which is defined as follows:

Br =
Bt

Bp
(4)

where Bt is the total breakage and Bp is the breakage potential corresponding to the initial grading
curve. For the grading curve shown in Figure 12, the relative breakage index corresponding to
each PSD curve can be calculated using the method provided by Hardin [40], and the results
are shown in Figure 13. Overall, the relative breakage index increased with the increase in axial
strain; especially, after the shear strain exceeded 10%, the growth rate was more prominent. For
both the unreinforced and reinforced specimens, the increase in Br under a confining pressure of
1600 kPa was relatively limited. Among them, the increase in Br of the reinforced specimen was
relatively small after exceeding a 1200 kPa confining pressure, indicating that the effect of a high
confining pressure on Br was limited. In addition, Figure 13 also shows the final relative breakage
index when 20% shear strain was reached. Under confining pressures of 400 kPa to 1200 kPa, the
final Br of the reinforced specimen was slightly higher than that of the unreinforced specimen. In
contrast, the Br of the unreinforced specimen under a confining pressure of 1600 kPa was more
prominent, reaching about 8%. This is further evidence that particle breakage in the reinforced
specimen may be relatively smaller under a high confining pressure. At relatively low confining
pressures, the reinforcing effect increased the shear stress, and thus the degree of particle
breakage. However, when the confining pressure was high enough, the breakage potential of
the particles due to the geogrid volume decreased, and the geogrid also limited the shearing and
misalignment of the particles. These effects caused the final particle breakage of the reinforced
sample to be slightly lower than that of the unreinforced condition. Therefore, understanding
the effect of high confining pressures on the breakage behavior of unreinforced and reinforced
coral sand is of great significance for future reinforcement design and understanding of the
mechanical mechanism.
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Figure 13. Evolution of the relative breakage index Br: (a,b) evolution of the relative breakage index
with axial strain in unreinforced and reinforced cases, and (c,d) final value of the relative breakage
index in unreinforced and reinforced cases.
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This study compared the macroscopic shear mechanical behavior, microscopic stress
characteristics, and particle breakage of unreinforced and reinforced coral sand in a high
confining stress interval using a three-dimensional DEM simulation. These efforts further
enhanced the understanding of the shear behavior of unreinforced and reinforced coral
sands, which is important for future island and coastal engineering construction. Neverthe-
less, the influence mechanism of particle breakage on the macro- and micro-behaviors still
needs to be further explored under high-stress conditions to enhance the understanding
and optimal design of the bearing and deformation behaviors of geo-structures related to
unreinforced and reinforced coral sands.

5. Conclusions

This work investigated the macro/micro-shear mechanical behavior of unreinforced
and geosynthetic-reinforced coral sands under the influence of high confining stresses using
3D DEM simulations that were validated by laboratory triaxial tests. The main insights
obtained from these works were as follows:

(1) The high confining stress and reinforcement could inhibit the bulging deformation of
the triaxial specimens, especially by reducing the particle displacement in the central
region of the specimens. In the unreinforced condition, the deviatoric stress–axial
strain curves presented obvious peaks at high confining pressures, and the softening
tendency was obvious. On the contrary, the deviatoric stress–axial strain curve in the
reinforced condition was without peaks and showed a slight hardening or plateau
pattern. Overall, the shear strength in the reinforced condition was slightly greater
than that in the unreinforced condition, but the contribution of the reinforcement to
the shear strength was still limited under the high confining pressure. The internal
friction angle in the high confining pressure condition was close to that in the low
confining pressure condition, but the pseudo-adhesion in the high confining pressure
condition showed a certain increasing trend, which originated from the combined
effect of reinforcement and inter-particle occlusion enhancement.

(2) High confining stresses and reinforcement affected the micromechanical characteris-
tics of coral sand and geogrids, as evidenced by changes in contact force patterns and
stress levels. The force chains with greater forces in the reinforced specimens under
high confining pressure were dominantly distributed in a columnar pattern along
the specimen’s central axis, whereas the force chains in the unreinforced specimens
were uniformly distributed along the entire specimen. The effect of the confining
pressure on the geogrid tension was relatively insignificant at low shear strain. With
the increase in shear strain in this triaxial test, the tensile force of the geogrid under
a high confining pressure increased significantly, and the tensile resistance of the
middle layer was relatively greater. Therefore, the geogrid layer played more of a role
in the shear strength and deformation suppression under high confining stress.

(3) The distribution of particle fragments under high confining stress was related to
the shear strain and the reinforcement condition. With the increase in the confining
pressure, the number of particle fragments in the unreinforced specimens instead
dominated. The PSD curves at each shear strain indicated that the particle size
interval in which particle breakage occurred was mainly from 0.5 mm to 1 mm.
The level of confining pressure strongly influenced the PSD curves, whereas the
effect of reinforcement on the PSD curves was very limited at the same confining
pressure. The statistically based relative breakage index indicated that the final Br of
the reinforced specimens at a 1200 kPa confining pressure was slightly larger, while it
was slightly smaller than that of the unreinforced specimens at 1600 kPa. These results
demonstrated that the effect of reinforcement on the degree of particle breakage was
dependent on the level of the confining pressure.
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