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Abstract: Geoenvironmental engineered barriers, such as geotechnical and hydraulic layered
structures called liners, are essential for protecting the environment from pollution. Liners are
usually compacted clay liners (CCL), geomembranes (GM), geosynthetic clay liners (GCL), or
a combination of these liners (composite liners), which require significant attention concerning
materials, techniques, and procedures to perform adequately. This work reviews the function
of geotechnical and hydraulic barriers as liners and highlights the lack of investigation and
problematic aspects of them. In addition, the work provides an overview of the literature
around earthworks which are liners’ specific configurations, such as landfills, dams, ponds,
wastewater lagoons, and vertical barriers. Furthermore, the main investigations, issues, and
perspectives are demonstrated, and are discussed alongside the trending research areas and
sustainable new materials. This work highlights different directives in several countries for
liner construction standards and testing program specifications, analyzing their economic
aspects. The main studies on the subject have been compiled, and a bibliometric analysis
was performed. Thus, this paper concludes by pointing out gaps in the research regarding
alternative materials and structures within geoenvironmental investigations on liners, and
signposts future scientific threads related to sustainable development.

Keywords: review; state-of-the-art; bibliometric analysis; liner material; compacted
clay liner; geosynthetic clay liner; geoenvironmental engineering; hydraulic barrier;
sustainable materials

1. Introduction
Liners are structures that are used as containment barriers to prevent atmosphere,

soil, superficial water, subsoil, and groundwater contamination [1] by pollutants that are
released from landfills, dams, ponds, wastewater lagoons, dumpsites, among other sources.
They usually consist of compacted clay liners (CCL), geomembranes (GM), geosynthetic
clay liners (GCL), or a combination of those (composite liners), with the main purpose
of environmental protection [2–5]. To prevent subsoil and groundwater contamination
by pollutants infiltration, hydraulic conductivity (k) is the most significant factor for an
assessment of liner performance [6].

The main requirements for liner materials are low hydraulic conductivity (usually
k less than 10−9 m/s), chemical and environmental compatibility, low deformation during
service, self-healing properties to avoid the occurrence of cracks or ruptures, and bearing
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capacity to support the surcharge of the disposed material [4,5]. Clays, like bentonite,
emerge as the raw materials which best adhere to most of these requirements; however,
depending on the region, the availability of such materials is scarce, generating high costs
and constraints. GMs, and most notably GCLs, are materials with very low hydraulic
conductivity. Furthermore, GCLs have good self-healing properties; however, they also
may be expensive compared to CCLs, and they demand special construction control, and
therefore compatible technical maturity, which is not available worldwide.

This justifies the need for researchers and practitioners to develop and investigate
alternative materials, using other types of soils, feasible industrial waste, and mixtures of
soil and waste. Besides good field performance, the associated environmental impact and
socioeconomical aspects of these materials, along with the treatments and construction
procedures they require, must also be investigated. Leachate from municipal solid waste
(MSW), which contains harmful substances such as heavy metals, organic pollutants, and
ammonia [7], may percolate through the soil and reach groundwater and/or nearby water
bodies, impacting aquatic ecosystems and public health if the base liners have sealing prob-
lems. Leachate contamination processes include cationic exchanges, filtration, adsorption,
complexation, precipitation, and biodegradation [8,9]. Dumpsites or inadequate MSW
landfills lead to soil degradation and a loss of biodiversity in the surrounding areas due to
pollution, reducing soil fertility, altering microbial communities, and causing changes in
vegetation [10], disrupting ecological and natural processes. They also increase the fire risk
due to the decomposition of organic waste and the release of flammable gases, which are
allied to dry weather and elevated temperatures [11].

Furthermore, they may impact air quality by the emission of particulate matter and
volatile organic compounds, causing respiratory problems to the nearby population [12].
An efficient cover, also built with liners, plays an important role in controlling greenhouse
gas emissions, particularly methane, which is a gas with a much higher heat-trapping
capacity than carbon dioxide (both are components of MSW biogas). Landfilling contributes
approximately 20% of total methane emissions globally [13].

Recently, MSW landfills design has been performed by geotechnical engineers due to its
technical and scientific contribution to hydro-mechanical properties and the site’s operation,
monitoring, and closure techniques [14]; however, there is still a lack of standardization and
regulation in many countries. Waste management regulations are shaping the circular econ-
omy [15–17], and innovation has brought about transformative advancements, exposing the
necessity of collaboration between researchers, policymakers, and practitioners. The integra-
tion of environmental and geotechnical engineering as a key innovation in waste containment
and liners design has already been pointed out for circa three decades [18]. Presently, the
integration of emerging technologies is essential to further refine waste management practices,
and the implementation of sustainable practices based on waste treatment advancements and
geotechnical performance of new materials can mitigate environmental impacts and safeguard
ecosystems [19–22], facilitating sustainable waste management.

Thus, this paper aims to survey and study the literature on geotechnical liners acting
as hydraulic and environmental barriers, pointing out the main contributions and opportu-
nities for future sustainable practices, including innovative perspectives for new materials
and structures.

The investigation on liners meets the United Nations (UN) Sustainable Development
Goals (SDG) 9, 11, and 12 [23]. SDG 9 relates to industry, innovation, and infrastructure;
research on alternative liner materials enhances sustainable infrastructure for waste contain-
ment, and the integration of industrial by-products as geomaterials promotes technological
innovation. SDG 11 focuses on creating sustainable urban environments by ensuring proper
waste disposal and contamination control. This research helps cities and communities to
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reduce soil and groundwater pollution by improving landfill and wastewater containment
strategies. In addition, SDG 12 emphasizes sustainable consumption, waste reduction,
and the circular economy. Thus, investigations on alternative materials, waste generation
reduction, and valorization support these goals.

2. Bibliometric Analysis
The bibliometric analysis used the Scopus database, and the search was carried out

with the following keywords, as shown in Figure 1a. The search started with “hydraulic*
barrier” OR “geotechnic* barrier”, resulting in 787 documents, then the research was
channeled with separate keywords, “landfill” OR “brownfield site*”; “dam*” OR “pond*”
OR “reservoir*” OR “wetland*”; “CCL*” AND “compacted clay liner*” OR “GCL*” AND
“geosynthetic clay liner”, generating 196, 118, and 127 documents, respectively. The papers
were analyzed and then selected according to their relevance, and are listed in the references.
Scopus’ keyword co-occurrence when searching for “hydraulic* barrier” OR “geotechnic*
barrier” data was exported, and the VOSviewer software (free, online software, version
1.6.20) was used to generate a keyword co-occurrence map (Figure 1b). Moreover, a pie
chart with the research areas of the 787 works, and a graph showing the evolution of
publications according to the year and country are shown in Figure 1c,d, respectively.
In addition, Canva software (free, online resource accessed at https://www.canva.com/
(accessed on 29 January 2025)) was used to illustrate the flowchart (Figure 1a). To respect
copyright and image rights, the artificial intelligence (AI) tool Imagine AI was used to
illustrate the liners following the AIG identification, as shown in Figure 2.
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Figure 1. Bibliometric analysis keywords’ research mechanism (a) co-occurrence map, (b) the main
subject area chart, (c) year, and (d) countries of the 778 Scopus documents.
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Figure 2. AIG images of (a) a landfill, (b) an earth dam, (c) a wastewater lagoon, and (d) a dumpsite.

The keyword co-occurrence indicates that the strongest connections are among hy-
draulic conductivity, soils (clay), and geosynthetics (geomembranes and GCL). The red
connections show geotechnical engineering concerns, with investigations into natural
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materials (bentonite, soil, sand, clay, mixtures), geotechnical properties (compaction, per-
meability), and problematic mechanical behaviors (shrinkage, swelling); the blue side
expands that to geosynthetic materials; and the green one highlights environmental issues
related to aquifers and groundwater (infiltration, pollution, resources, remediation).

Figure 1c shows that the studies on geotechnical and hydraulic barriers are concen-
trated, as expected, in the earth and environmental sciences (more than 50% of the studies);
engineering is an important area, with 20%, followed by percentages equal or lower than 7%
for agriculture, materials, energy, chemistry, computer science, physics, and the emerging
subject of biochemistry. Figure 1d shows the increase in articles published during the past
fifty years (red marker) and the number of papers released in each country (black marker),
highlighting the huge scientifical and economic power, the United States of America, fol-
lowed by the consolidated Germany, and the emerging player China, with more than 50%
of all publications.

3. Waste Crisis
The world is facing a growing environmental crisis, which generates challenges for

public health and sustainable development. The consequences of increasing population and
exponential industrialization generate high amounts of waste, pollution, and contamination.
Recent reports [24] have estimated that approximately 2.1 billion tons of municipal solid
waste are generated annually, and this is projected to increase to 3.4 billion tons by 2050.
This alarming quantity of waste poses a significant threat to our planet’s ecosystems, human
health, and economic stability.

The UN Environment Program (UNEP) [25] revealed that 54% of global waste consists
of organic materials: 17% are paper and cardboard; 12% are plastics; 6% are glass; 5% are
metals; 6% include other materials; and only 19% of MSW is currently recycled to make
biogas, including paper, metals, and glass, in addition to plastics and treated biodegradable
waste (by composting and anaerobic digestion). This average recycling percentage hides
the huge differences in recycling among different countries. Oceanic pollution due to
plastics not only harms marine life, but also enters the food chain, thus impacting human
health, with an estimated 8 million tons of plastic being disposed in oceans every year [26].
So-called e-waste, or electronic waste, generated from technology activities presents health
risks due to the presence of toxic metals like lead, mercury, and cadmium, and flame-
retardant chemicals.

The main destination of all these kinds of residues is land disposal sites (Figure 2).
MSW is mostly landfilled, despite the efforts in recent decades to find alternatives, such as
incineration, composting, recycling, and valorization. The UNEP estimated that around
40% of landfilling worldwide is unsustainable, due to inadequate construction, manage-
ment, or maintenance. Therefore, it is necessary to continue studying alternatives for
waste reutilization and reapplication in geotechnical and civil engineering, or any other
industry [27,28], as well as to improve the disposal of waste that will not be reutilized.

According to the European Waste Hierarchy [29], landfilling is not the most desired
option and should be limited. In 2018, 24% of all municipal waste generated was landfilled,
attracting attention to the effects on human health and on the environment because of bad
construction methods [30]. In addition, the generation of leachate can contaminate ground-
water and produce methane, a potent greenhouse gas [29]. This scenario, compounded
by predictions that the world population will reach approximately 11 billion people by
2100 [31], means that the future regarding the storage and containment of waste must be
addressed. Populations near waste sites that are not properly engineered can have severe
health effects due to improper disposal and water, soil, and/or air pollution. In addition,
exposure to toxic wastes cause can lead to respiratory and cardiovascular risks, among
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other issues [24]. Thus, these structures have the potential, when malfunctioning, to release
pollutants, whereas proper MSW landfill design, construction, and monitoring may prevent
environmental degradation and human health impacts [32]. In many underdeveloped and
developing countries, where incineration is too costly and recycling and composting are
still being implemented, well-engineered landfills are a reasonable solution for human
health and environmental protection compared to mere waste dumping.

It is imperative to promote sustainable waste management practices, including waste
reduction, recycling, and the adoption of modern landfill technologies. Economically, the
World Bank reported costs reaching USD 450 billion per year by 2050 to ensure collection,
treatment, and recycling, if no intervention is made [24]. Governments, academics, indus-
tries, and individuals must work together to implement sustainable waste management
strategies, increase recycling rates, and promote responsible consumption, to mitigate the
waste crisis and create a cleaner, sustainable, and healthier world for future generations.

4. Liners in Waste Disposal and Containment Facilities
Liners are a key component of storage facilities for waste and toxic substances, such

as MSW landfills, mining tailing dams, wastewater ponds, fuel storage tanks, industrial
storage tanks, disposal sites for drilling fluids, and heap leach piles, among others, since
they protect subsoil and subterranean waters from spills, overflows, and leachates. MSW
landfills and mining tailing dams stand out, since MSW landfills are still the most common
destination for municipal solid waste all over the world, while mines and quarries are
one of the biggest sources of solid waste [33]. According to the Mining, Minerals, and
Sustainable Development Project [34], there are approximately 3500 active mining waste
facilities worldwide, consisting of waste rock dumps and tailing dams [35].

Each application involves different specific pollutants, but the concept of minimizing
the release of liquids and/or gases to the subsoil and/or atmosphere by means of a
combination of drainage and impermeable layers is common to all of them. To approach
the topic of liners, MSW landfills will be used as examples. Landfill disposal is based on the
premise of confining or containing waste. Sanitary landfills are often disposal sites for urban
waste, industrial waste is generally disposed of in industrial landfills, and mining tailings
are stored in tailing dams or dikes, or in piles [32]. The classification of disposed waste
(hazardous, nonhazardous) mainly depends on its composition. Modern regulations may
prohibit the disposal of recyclable inert waste in MSW landfills (construction and demolition
waste should have a specific destination to facilitate recycling), as well as hazardous
substances that should have a reverse logistic, i.e., tires, pesticides, e-waste. Therefore, the
components of MSW leachate and biogas may not significantly differ worldwide, despite
the gravimetric composition (percentage by weight of each component) varying remarkably.

Important information regarding landfill design is the site climate, topography, ge-
ology and hydrogeology (including groundwater composition and seasonal variation),
seismic history and rock geology, and the mechanical and hydraulic characteristics of
adjacent soils for raw materials. Some design topics for landfill design are landfill construc-
tion modeling; subsurface drainage; bottom liner; waste compaction; daily, intermediate
and final covers; run-on and run-off system; gas venting; leachate and gas collection and
treatment systems; slope and foundation stability; in addition to long-term geotechnical
and environmental monitoring [32,36].

The base and top control of a liner are the main geotechnical issues which should
be addressed to minimize soil infiltrations and gas emissions, respectively, and waste
compaction to optimize its capacity. Bottom liners and covers insulate the waste, bottom
drainage layers remove the leachate, top drainage layers conduct the biogas to treatment
or energy production, and the superficial drainage layers prevent surface erosion. Non-
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hazardous waste landfills’ standards vary [37], but generally specify a bottom liner, mostly
consisting of a soil layer with hydraulic conductivity less than 10−9 m/s, overlaid by a
HDPE geomembrane, covered by a drainage layer. The geomembrane should be covered
by an additional soil layer or a geotextile to protect against damage during the construction
of the drainage layer [32]. Cover requirements differ according to regulations and authors’
recommendations about soil classification [38], having at least 30–40% of the fine fraction,
while the values of plastic index are between 10 and 50% [37,39,40]. Figure 3 shows a
typical cross-section of a sanitary landfill adapted from [36], from the subsoil to the topsoil
over the final cover for landscaping.

When in the presence of oxygen, the organic matter present in the landfill undergoes
oxidation and decomposition; as soon as the oxygen decreases, anaerobic decomposition
starts, first by facultative microorganisms, and later by methanogenic bacteria [41,42]. The
product of water infiltration through the top and the decomposition liquid is named the
MSW leachate, usually with a very complex composition, including chloride, nitrogen
(ammoniacal, organic, nitrite, nitrate), phosphorous, heavy metals, high alkalinity, high
BOD (biochemical oxygen demand), high COD (chemical oxygen demand), and a pH
varying generally between 5 and 8 [43]. The estimation of leachate is based on the hydric
balance of the cover system, landfill constituents, and construction characteristics.

The decomposition of organic matter generates the biogas, which varies along the
biodegradation stages; during the longest stage, methanogenic, the main components are
methane and carbon dioxide, both greenhouse gases [36]. Table 1 shows the major aspects
and criteria for site selection. Groundwater conditions affect site selection; low usability
aquifers are preferred. Additionally, the surrounding areas should be examined: proximity
to lakes, rivers, and water courses that impact run-off and can be polluted must be avoided,
as well as floodable areas, recharge areas, and drinking water supplies.

Table 1. Landfilling site selection criteria [44–46].

Aspect Criteria Impact Preference

Topography Cover Sealing Workability and k
Slope Release of contaminants Lower than 15%

Erosion Migration of pollutants Low erosion
Run-on and -off Leachate ratio Little control needed

Soils k Release of pollutants Low
pH Tendency to absorb HM High-neutral

CEC Attenuate contaminants High
Surface Protection and k for liners Low k

Geology Bedrock Susceptible to fractures Carbonated
Joint Discontinuity channels Continuity

MSW landfilling demands urban areas, results in devaluation of the surroundings,
and smells are still an inconvenience, even with gas collection and treatment. Nowadays,
MSW landfills are being transformed into waste treatment centers, combining landfill for
hazardous waste, recycling and composting areas, and desorption plants, among others, in
the same site. Landfill mining [47] is an alternative strategy to help solve the lack of space
problem and enhance circular economy, using treatment, recycling, and energy production
from the mined waste; however, there are estimates that the reduction in the environmental
impact is only around 28% [48].
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These technical measures significantly increase the construction costs of landfills and
ponds, which can be a constraint in low-income regions. In 2016, landfill construction
could cost from USD 300,000 to USD 800,000 per acre in USA, and the main impact is
because of the availability of clay, ranging from USD 32,000 to USD 162,000 [49]. These
costs undoubtedly vary significantly depending on the municipality, region, and country,
but the MSW landfill is an engineered earthwork, requiring the costs that good design and
construction demand. Site selection, operation, and closure are very important factors to
study when investigating alternative materials for earthworks.

Regarding design parameters, there are numerous factors requiring consideration for
landfill construction. Several works which provide an overview of many of these factors
have been developed over the years; Refs. [50–58] are examples of some of these works
developed in the 1990s and 2000s.

Unfortunately, in developing countries [9], dumpsites or non-engineered landfills are
still predominant. However, researchers have recently provided promising solutions to re-
mediate and redevelop brownfield sites, mainly risk assessment techniques monitoring the
field [59], bioremediation using native microorganisms [60,61], or native grass species for
the phytoremediation of heavy metal-contaminated soils [62]. In addition, the valorization
of waste can help the redevelopment of brownfield sites to encompass principles of the
circular economy [63]. This is emphasized by the importance of community engagement
and social equity engaging stakeholders from government and industry to revitalize those
sites [64], adopting a multidisciplinary and sustainable approach.
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5. Key Contaminants
Among the key contaminants to be contained by environmental liners, heavy metals

(HM) and the “forever chemicals”, like per- and polyfluoroalkyl substances (PFAS), poly-
brominated diphenyl ethers (PBDE), polychlorinated biphenyls (PCB), and bisphenol A
(BPA) [65], will be highlighted (Figure 4).
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5.1. Forever Chemicals

PFAS are a group of synthetic chemicals that have alerted environmentalists’ attention
due to their persistence, bioaccumulation, and potential adverse health effects. Recent
research has focused on their sources, effects, and remediation strategies. Reference [66]
alerted the presence of PFAS in drinking water supplies, which has raised concerns about
their adverse effects on reproductive, developmental, and immune systems. Reference [67]
investigated the release of PFAS from textiles during washing. Other studies [68,69]
have traced PFAS migration from landfills, industrial sites, and firefighting foams to
the surface and groundwater, contributing to a better understanding of PFAS transport
mechanisms. Analytical techniques in detecting and quantifying PFAS are crucial [69]; high-
resolution mass spectrometry, isotopic dilution, and passive sampling methods are used in
several fields. The persistence of PFAS in the environment has led to the development of
remediation technologies: Ref. [70] investigated the use of activated carbon to remove PFAS
from contaminated water sources; other innovative techniques, such as electrochemical
treatment [60] and bioremediation [61], have also explored how to degrade or immobilize
PFAS in the environment. Besides remediation, investigations on PFAS substitution in the
industry is growing. Reference [68] reviewed the use of bio-based surfactants as substitutes
for PFAS in firefighting foams, and highlighted their potential to reduce environmental
impacts. PFAS regulation and risk assessment frameworks for guiding policymakers in
establishing health-based exposure limits and managing PFAS-contaminated sites are still
challenging governments for appropriate guidelines [71].

In addition, the PBDEs are a group of synthetic flame-retardant chemicals widely used
at an industrial scale. Ref. [72] found a trace of PBDEs in surface water and sediments,
proving that urban runoff and industrial discharge are their main pathway through the envi-
ronment. Toxicologists and epidemiologists have investigated health issues caused by PBD
exposure; neurological problems can impact particularly children during their development
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stages [73]. Analytical and accurate techniques have been studied to trace and quantify
levels in various environmental samples, mainly using gas–liquid chromatography–mass
spectrometry (GC-MS and LC-MS, respectively) [74]. Regulations and policies to control
the use and disposal of PBDE are still in development, and are being discussed for environ-
mental events [75], with a view to restricting the production and use of persistent organic
pollutants, including certain PBDE congeners. There are already alternatives of flame
retardants to replace PBDEs: Ref. [76] evaluated the effectiveness of organophosphate in
consumer products and found promising results. In addition, remediation technologies are
essential to address PBDE-contaminated sites; Refs. [77,78] investigated the effectiveness of
advanced oxidation processes, such as photocatalysis and ozonation, for degrading PBDE
in water and soil, and found promising preliminary results in mitigating the long-term
impacts of PBDE contamination.

Another pollutant group is PCB, also recognized as persistent organic pollutants with
harmful effects on human and environmental health. References [79,80] found PCBs in
aquatic ecosystems analyzing sediment contamination. In addition, reference. Ref. [81] evi-
denced neurological cognitive impacts, which are especially worrying for pregnant women
and children. GC-MS is used for PCB analysis, identification, and quantification [82], aim-
ing to monitor contamination levels. In addition, chemical oxidation and phytoremediation
seem to be effective remediation techniques [83] to degrade PCBs in soil and water. The
Stockholm Convention on Persistent Organic Pollutants developed specific directives to
control the production, use, and release of PCB [84], and [85] evaluated the environmental
impact of alternative dielectric fluids in transformers to reduce PCB usage.

BPA has been used in the chemical industry for plastics and epoxy resins production
over the years. Reference [86] demonstrated its endocrine-disrupting effects and BPA’s
impacting metabolic disorders. References [87,88] found high amounts in drinking water
sources. LC-MS and GC-MS are already used for BPA detection and analysis [89]. Ref-
erence [90] investigated the use of bio-based polymers as alternatives to BPA-containing
plastics, reducing the environmental burden. Regulatory efforts have led to banning BPA
in some products, particularly those used by vulnerable populations, such as baby bottles
and sippy cups [91]. Reference [92] is currently exploring analogs, which are structurally
similar chemicals, to use as BPA replacements, without posing similar health risks.

5.2. Heavy Metals

HMs can cause poisoning, and are accumulated in soft tissues by ingestion, inhalation,
or skin absorption. Figure 5 depicts health issues, detection and quantification methods,
remediation techniques, and sustainable substitutes for the abovementioned contaminants.

The regulations outlined in Table 2 established the permissible limits for heavy metals
in waste deposition across different regions, including the United States, China, and Europe,
the latter continent for hazardous and non-hazardous waste. These regulations aim to
prevent groundwater and soil contamination by ensuring that waste containment facilities
maintain strict chemical compliance. A comparative analysis of different jurisdictions is
provided, highlighting variations in environmental standards, within the maximum allow-
able concentrations (mg/L) of hazardous elements in the leachate, helping to determine
the environmental safety of waste disposal sites.

Regarding the effect on the human body, arsenic (As), cadmium (Cd), lead (Pb),
mercury (Hg), and thallium (Tl) are harmful, and some heavy metals, like zinc (Zn), copper
(Cu), chromium (Cr), iron (Fe), and manganese (Mn), are required by the body in small
amounts, but are toxic in larger quantities [93].
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Table 2. Heavy metals toxicity regulatory limits for waste deposition.

Heavy Metal (mg/L) CFR 261.24 (2024) 1 GB 5085.7 (2019) 2 DL102 (2020) Hazardous 3 DL102 (2020) Non-Hazardous 3

Region USA China Europe Europe
Arsenic 5.0 - 25 2
Barium 100.0 - 300 100

Cadmium 1.0 1.0 5 1
Chromium 5.0 - 70 10

Copper - 100.0 100 50
Lead 5.0 5.0 50 10

Mercury 0.2 - 2 0.2
Molybdenum 10

Nickel - 5.0 30 10
Selenium 1.0 - 7 0.5

Silver 5.0 - - -
Zinc - 100.0 200 50
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6. Liners Materials
6.1. Compacted Clay Liners

Compacted clay layers may be used as bottom liners, to separate pollutants of the
waste from the subsoils and groundwater, and/or covers, to separate waste from the atmo-
sphere and superficial waters, ensuring sealing conditions and preventing environmental
impacts [97]. They were widely used since the early 70s, and assumed an important role in
landfill technology. Conventional CCL (Figure 6a) frequently contains bentonite [68], but
other clayey soils have been used. The performance of mixtures of bentonites with other
clays, silts, and sands has been investigated [14].
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The limit k value for CCL liner is generally 10−9 m/s [98], although this value can
vary depending on local directives [32] (Figure 6). The main properties of soils which are
used in liners to block pollutants migration [99] were summarized as follows:

• Very low hydraulic conductivity
• Strength to support the disposed material weight
• Deformation during service without failing or cracking
• Chemical compatibility with leachate
• Low-cost and easy construction materials
• Reference [38] exemplifies regulatory proposals for selection of materials
• Classification as low-to-medium plasticity; gravel, sandy, silty, and lean clays (CL);

high-plasticity and fat clays (CH); clayey sands mixtures (SC); or medium-to-high
plasticity clays (OH), according to the Unified Soil Classification System (USCS)

• Higher than 30% of particles passing 0.075 mm sieve (#200)
• Liquid limit (wL) equal to or higher than 30%, and plasticity index (PI) equal to or

higher than 15%
• pH equal or higher than seven and high cation exchange capacity (CEC)
• Maximum volumetric shrinkage of 4%

Table 3 shows the parameters used to characterize candidate materials for liner con-
struction, and their corresponding laboratory or in situ tests.

Clays have low k when well-compacted, and are therefore natural candidate materials
for barriers. However, they have been overexploited, and/or are not naturally available
within reasonable distances from the earthworks. Furthermore, soils are natural resources
that should be protected.
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Table 3. Liners’ main properties and parameters to be determined.

Aspects Properties Parameters

Physical Identification Particle size distribution Fines percentage, uniformity coefficient (Cu), curvature
coefficient (Cc), specific surface (SS), and soil classification

Physical index Natural water content (w), specific gravity (Gs), void index (e),
and saturation degree (s)

Plasticity Liquid limit (wL), plastic limits (wP), and plastic index (PI)
Compaction Optimal water content (OMC), maximum dry density (MDD),

and relative compaction (RC)

Chemical Composition Mineralogy X-ray diffraction (XRD)
Composition X-ray fluorescence (XRF) for oxides, Fourier-transformed infrared

(FTIR) for molecules bonds, and thermogravimetric analysis
(TGA)

Microstructure Scanning electron microscopic (SEM)
Adsorption Cation exchange capacity (CEC)

Geotechnical Characterization Expansibility Free swell (FS), and swelling or shrinkage limits (wS)
Consolidation Compressibility (CC), recompression (CR), swelling index (CS),

and consolidation coefficient (Cv)
Shear strength Cohesion (c), internal friction angle (φ), undrained shear strength

(Su), and unconfined compressive strength (UCS)
Hydraulic conductivity (k) Permeability and acceptable compaction zones (ACZ)

Environmental Compatibility Workability Friction, tear, burst, and punching
Climate Wet–dry (W-D) and freeze–thaw (F-T) cycles
Thermal TGA
Chemical Leachability and solubilization
Biological Biocompatibility, bioclogging, and treatment

From a mineralogical perspective, CCLs consist of a clay layer, each composed of
specific minerals which result in unique properties that affect liner performance. Kaolinite,
aluminum silicate hydroxide Al2Si2O5(OH)4, is the main mineral of clays. Kaolin is a very
important constituent in the production of ceramics, paint, plastic, and rubber materials.
Kaolinite derives from the decomposition of feldspar by the action of water and carbon
dioxide [100]. Its crystallographic structure consists of one sheet of silica tetrahedra com-
bined with one sheet of alumina octahedra held by hydrogen bonding (1:1 mineral). The
isomorphic substitution is low [101], so that kaolinite has a low swelling potential and
liquid limit. Halloysite is also a 1:1 mineral related to kaolinite, except for its tubular form.
Illite has a basic structure of one alumina sheet between two silica (2:1 mineral), linked by a
weak bond of interchangeable potassium ions between the sheets; in the silica sheet, there
is a partial substitution of silica for aluminum. Illite has moderate swelling potential and
a higher liquid limit than kaolinite. Montmorillonite, a member of the smectites group,
has the same crystallography structure as the illite, except that there are water molecules
instead of potassium ions; an isomorphic substitution trivalent aluminum ion for a bivalent
magnesium ion occurs in a 1:6 proportion, and has a very weak bond with water molecules
and interchangeable cations. Montmorillonite has a large specific surface area that, allied
to the high isomorphic substitution, favors the retention of positively charged and polar
species [36,100,102,103]. Table 4 synthesizes some characteristics of kaolinite, illite, and
montmorillonite that are relevant for the selection of materials for liner construction.

Table 4. Clay minerals’ characteristics [100].

Clayey Mineral Gs (-) CEC (meq/100 g) SS (m2/g) wL (%) wP (%) FS (%)

Kaolinite 2.6–2.7 3–15 10–20 30–60 25–35 10–20
Sodium 50 20 20
Calcium 40 10 10

Illite 2.6–3.0 10–50 65–100 60–120 35–60 15–20
Sodium 60 30 15
Calcium 90 40 20

Montmorillonite 2.3–2.7 80–200 700–900 100–900 50–100 80–250
Sodium 700 100 250
Calcium 200 60 80
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Bentonite, a soil mostly composed of montmorillonite, has been extensively used
in CCLs to retain MSW leachate pollutants [104]. It has a high swelling capacity and an
extremely low k [100], and has been used in effective barriers for earthworks impermeabi-
lization [105]. However, the degradation of bentonites generally occurs when permeated
with acid solutions, such as those encountered in mining, affecting their physical proper-
ties [97]. Proper design and installation are needed to ensure the long-term integrity of the
liner [106], like being well-compacted, pre-hydration, and in situ testing.

The performance of GCL and CCL can be affected by the type of bentonite used.
Reference [107] tested BN (natural sodium bentonite) and BS (a sodium-activated calcium
bentonite) permeated with distilled water (DW) and NaCl and CaCl2 solutions. Very low
k-values were achieved at an effective stress of 30 kPa; however, the values of k were
higher with the permeation of the solutions, showing a detrimental effect on the hydraulic
performance of both bentonites. BS generally has a lower hydraulic conductivity than
BN when pre-hydrated with DW [108]. Not only does the type of bentonite affect the
performance of GCLs, but the size of the grain: reference [109] tested a fine granular
bentonite and a powdered bentonite, compacted on an optimal moisture and placed on a
silty-sand layer. Powdered bentonite hydrated much quicker than the granular bentonite
because of its higher specific surface, although both specimens achieved the same hydraulic
conductivity along time.

Material science has led to innovations in modifying bentonite properties to enhance
its containment efficiency. Reference [110] demonstrated that incorporating polymers can
further reduce permeability and increase resistance to chemical interactions, contributing
to more effective containment. Also, the use of numerical modeling and simulations to
predict the behavior of bentonite liners under various scenarios has been investigated, such
as different compactions or long-term effectiveness [111].

Enhanced bentonite liner (EBL) is another innovation in the field of geotechnical engi-
neering which improved waterproofing and mechanical properties. Studies have focused
on enhancing the performance of bentonite liners through innovative techniques and addi-
tives for environmental sealing [112–116], with permeability control [117] reducing the risk
of failure. Their long-term durability under different leachate concentrations and tempera-
ture conditions and their compatibility with landfill leachates has also been investigated,
ensuring their effectiveness in real-world scenarios [118,119]. The literature allied in situ
and laboratorial testing within numerical modeling simulations for EBL [120], evidencing
effectiveness in containing contaminants migration through soil and groundwater. EBL re-
sults in greater structural integrity, improved thermal conductivity, and the higher stiffness
of the mixture [121].

Silty and sandy liners can also be applied as liners, despite needing optimized design.
Bentonite–sand mixtures (BSM) are normally used in landfills, waste disposal facilities,
and as CCL when the hydraulic conductivity of the local soil exceeds the allowable limit.
Reference [122] evaluated the hydraulic conductivity of compacted bentonite–sand mix-
tures, which met the allowable limit values.

Reference [123] examined the k of enhanced sandy liners in landfill cover systems and
found the importance of proper compaction techniques and material properties in achieving
liner parameters, just like [105] for silty soils incorporating bentonite. In addition, Ref. [124]
assessed geogrid-reinforced sandy liners on preventing contaminant transport and liner
integrity through geotechnical conditions were advantageous. Among laboratorial and
in situ characterizations of these soils, numerical simulations are also used to analyze
the hydraulic behavior of compacted sandy and silty liners under different consolidation
conditions [120], enhancing the understanding of liner behavior, especially for long-term
performance and durability [125,126]. Reference [127] varied the clay percentage from
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10 to 70% of clay content, and also the compaction energies, using reduced, standard, and
modified, to test soils as landfill liners, and concluded that it is possible to reach minimum k
by choosing the compact energy well.

Furthermore, silty clays and silts reached k values for liners, meeting directives from
several countries. Some recent works about other soil types and bentonite mixtures must be
mentioned: marine clay [128], lateritic [129], and saprolitic soils [14], and local soils mixed
with bentonite [130].

6.2. HDPE

HDPE liners have become, among geosynthetic engineering, one of the most used
and essential materials for barriers with diverse applications [131]. Durability, chemical
resistance, and the impermeability of HDPE are the key components in environmental
protection and waste management when obtaining attention for design and installation.
The long-term mechanical properties of HDPE liners in a landfill cover system have been
studied [132–134], and when reinforced with geogrids [135], they have tensile strength and
stability which is crucial for maintaining integrity and the main issues of HDPE. In addition
to the evaluation of different welding techniques on the shear strength of HDPE, the use of
geomembranes [136]; slope stability [137], UV exposure and temperature fluctuations [138],
and numerical modeling to predict HDPE performance [139] has been investigated over the
past decades. Polymers and additives such as carbon black, titanium dioxide, antioxidants,
hindered amine light stabilizers (HALS), and acid neutralizers, also need attention for
their loss during service. Despite this, Ref. [140] showed that mechanical damage due to
repeated loading and abrasion affected the k of geosynthetics and decreased tensile stress.

Enhancements in HDPE properties have been used for extreme situations and exposure
to severe contaminants. An example of this is polyethylene with raised temperature
resistance (PERT) resins due to efficient waste management. PERT resins, which exhibit
enhanced temperature resistance compared to conventional polyethylene, make suitable for
high-temperature environments [141], emphasizing sustainability and circular economic
principles. In addition, Ref. [142] demonstrated that recycled geomembranes can offer
comparable performance to virgin materials on durability and resistance under various
conditions [143] among mechanical and thermal properties [144]. Reference [145] applied
and studied HDPE as a cover liner and observed an increase in methane uptake flow,
showing its importance in the capture of biogas.

Many studies have focused on HDPE geomembranes, not only as cover liners, but as
basal lines when in contact with CCL, just like bentonite sand mixtures. Reference [121]
analyzed the shear behavior at the CCL-HDPE interface under F-T cycles, a very important
criteria for places with low temperatures. This analysis used sodium bentonite at a ratio
of 1:10 in CCL and natural silica sand, such as the HDPE with 1.5 mm thickness, and
showed that the shear behavior and resistance at the interface are affected by the number
of F-T cycles, and the friction angle decreases together with the shear resistance from the
first five cycles. Reference [52] noted that the geomembrane’s temperature has a great
influence on landfill’s behavior, having a significant effect on the clogging rate of the
leachate collection system. A wide temperature range was reported, from 5 to 25 ◦C,
although higher temperatures, 50–70 ◦C, are mainly often attributed to aerobic conditions;
however, the generation of gases, like CO2 and CH4, evidenced anaerobic conditions.
The leachate percolation among membrane layers contains nutrients resulting in bacterial
growth, principally in geotextiles filters, drainage layers, and collection pipes. This bacterial
activity is called biological clogging [131]. Clogging phenomena involve the filling of the
void space between solid particles as a result, not only with bacteria, but also a combination
of biological, physical, and chemical factors [146–148], leading to a problem, although this
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can be controlled by an appropriate design, and it is important not to assume that clogging
would make it waterproof.

Bituminous high-density polyethylene (BHDPE) is another alternative liner material
which combines the durability and impermeability of HDPE with the enhanced sealing
properties of bitumen, and has gained substantial attention for its potential to provide
environmental sealing effectiveness. It is widely used for hydraulic infrastructures for
geotechnical and environmental protection [149]. Its advantages are basically mechanical
and hydraulic properties [149], preventing fluid migration and diffusion of hazardous
substances [150]. Despite this, UV radiation and cyclic temperature changes can impact
their performance [151], showcasing the importance of case studies and field monitoring in
a hazardous waste containment site [152] integrated with numerical modeling to predict
the behavior under stress distribution [153,154]. Reference [149] studied the interface trans-
missivity between GCL with sodium and calcium bentonite and smooth or textured HDPE.
The results concluded that it can fit for hydraulic barrier design regarding chemical and me-
chanical compatibility; furthermore, Ref. [155] found that pre-hydration increases flow rate
and higher confining stress decreases it in small, intermediate, and large-scale experiments.

6.3. Geosynthetic Clay Liners

Geosynthetics have been utilized in civil engineering earthworks for separation, filtra-
tion, drainage, reinforcement, and barriers, for at least 50 years. Physical, chemical, and
mechanical properties were highly tested, and standards have been improved during those
years showing more effectiveness than natural products, clays, when acting as barriers for
environmental protection. Some researchers have been investigating several raw materials,
properties, tests, and standards of geosynthetics, providing vast knowledge for quality
applications for each case [3,109]. However, on the economic side, geosynthetics have a
higher cost of production compared with natural resources, and generates more waste in
its production and installations. Depending on the dimensions and applied case, different
types of polymers can be used, classified according to their mesh structure and proper-
ties, such as permeability, compatibility with clays, shear strength, puncture, self-healing
properties, high temperatures, creep, freeze–thaw, and wet–dry resistance.

Geosynthetics, which are widely used for the impermeabilization of soil struc-
tures [156], can be made of natural materials—animal, vegetable, or mineral—or have
a chemical origin—organic or inorganic [99]. The natural ones, coming from animals, are
wool and silk, and the mineral ones are asbestos, besides those of vegetal origin, like jute,
cotton, linen, and hemp. Chemical raw materials are divided into organic—natural and
synthetic—polymers, and inorganic—glass, metal, and carbon. In general, the base poly-
mers used in the manufacture of geosynthetics are polyesters, in particular polyethylene
terephthalate (PET); polypropylenes (PP); chlorinated polyethylene (CPE); polyvinyl chlo-
ride (PVC); chloro-sulfonated polyethylene (CSPE); polyamide (PA); and the polyethylene,
which is the most utilized in hydraulic barriers (PE), including very low density (LDPE),
medium density (MDPE) and high density (HDPE).

Geosynthetics have several functionalities. For earthworks the main ones are rein-
forcement, separation and/or filtration, drainage, and fluid barriers, among others like
protection, absorption, insulation, screening, containment, cushioning, surface stabiliza-
tion, and vegetation reinforcement [157]. Figure 7 [158] shows the types, their use, and
their respective functions, as summarized by [3]: geogrids for slope reinforcement be-
neath the waste and reinforcement for cover soils above geomembranes; geonets, for
in-plane drainage; geomembranes (GMB), which are relatively impermeable as liquid
and gases barriers; geocomposites (GCO), two or more geosynthetics for separation, fil-
tration, or drain-age; geopipes, for rapid drainage systems and facilitating the collection
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of the leachate; geotextiles (GTX), for filtration and the geomembrane’s protection from
punctures; and geosynthetic clay liners (GCL), composite materials consisting of bentonite
and geosynthetics used as hydraulic barriers and waterproofing materials preventing
soil infiltration.
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After understanding the different types of geosynthetics, their functions, and appli-
cations, the present study highlights the comparison between geosynthetic clay liners
(GCL) and compacted clay liners (CCL). There are many practical situations where a
low-permeability clay or geomembranes alone are enough to prevent environmental con-
tamination [4], although, in many instances, it is necessary to mix them, with GCL being
the most appropriate [159]. They can be used for basal or cover liners in landfilling and
dams as a more effective way to prevent leachate percolation and the draining of pollutants,
due to their low k, and that they are more reliable than CCL. However, GCL has low shear
strength and is highly compressible; in addition, the thickness of GCL generates important
issues such as punctures, tears, and bursting [160]. Their k is also affected by many aspects
during service, defaulting to maintain design parameters. The main factors are overlap-
ping width, overburden-confining stress, and hydraulic head [65]. Reference [161] tested
different configurations, and concluded that to control the decrease in flow through GCL
with time, some techniques can be performed, such as a supplemental bentonite powder
layer, a control hydraulic head and overburden-confining stress.

GCL hydration has an important role in the hydraulic conductivity, decreasing the
k when performed with water before leachate permeation [52]. GCL needs to be well-
hydrated following the relevant standards to achieve a low permeability, occurring by three
principal sources, first from the adjacent ground, second from the liquid to be contained,
such as water in wastewaters ponds or leachate in landfills, and third, and rarely, from
accidents, such as accumulated rainfall in the drainage layer [65]. Reference [116] dissected
the importance of hydration in the ability of GCL to contain hydrocarbons and gases, the
effect of cation exchange from the adjacent soil, the effect of leachate interaction, shrinkage,
the erosion of exposed liners, and the importance of the self-healing capacity of a GCL.

Reference [162] experimented on the effects of the moisture suction response of GCL
with field exposure effects and changing the hydration fluid, the GCL thickness and layers,



Sustainability 2025, 17, 1850 18 of 31

using a lightweight woven geotextile and medium-weight non-woven cover geotextile, in
addition to a GCL with a woven geotextile and non-woven-cover textured 0.5 mm HDPE.
The results showed differences in the moisture suction due to the hydration fluid—DW,
tap water, or CaCl2—and exposure conditions, but the GCL type has little effect on that
relationship. Also, pre-hydration by permeation with DW resulted in k around 10−11 m/s,
and reference [107] tested six types of GCLs permeated with coal combustion leachates
having the highest k directly with leachate, and they concluded that polymeric composites
could lower the hydraulic conductivity.

Additionally, Ref. [2] explicated the advantages and disadvantages of GCL due to its
historic usage, physical, chemical, economical, and practical applications in Table 5.

Table 5. Advantages and disadvantages of GCL.

GCL Advantages GCL Disadvantages

Fast installation Low shear strength
Easy installation and repairing High punctured probability

Low cost Installations’ loss of bentonite
Low thickness Gas leakage when low moisture

Low k Interface strength issues
Settlement maintenance Lower leachate attenuation

Self-healing Residual shear strength loss
Not dependent on the local availability Higher long-term flux within load

Effective gas barrier

According to [52], GCL expected service life to be very long, since there is no significant
loss of bentonite during placement and there is no lateral disturbing of bentonite within
hydration, maintaining bentonite distribution. Water percolation through such structures
and impact factors can be measured within many equipment and methodologies, such as a
modified thermo-triaxial [163] and swelling and diffusion equipment [164] for laboratorial
versus industrial GCL comparison. Reference [165] made an analysis comparing the
effectiveness of GCL and CCL, showing equivalency demonstrations to use both composite
liners, evaluating leachate flow, the permeability soil layer, and developing an analytical
method for design engineers. They concluded that a liner system with GCL is equivalent to
a conventional CCL.

7. Alternative Liners
Clays have low k when well-compacted, and are therefore the natural candidate

materials for barriers. However, they have been overexploited, and/or are not naturally
available inside reasonable distances from the earthworks. Furthermore, soils are natural
resources that should be protected. Alternative clay liners have been investigated to
promote the utilization of local soils, enhancing them with additives when necessary. As
mentioned before, bentonite is perhaps the most used additive for clay liners, mixed with
local soils or inside GCLs. The present trend is to investigate mixtures of soils with waste,
also providing a better destination for various types of residues.

Some examples of investigations about soil substitution by industrial by-products
include lime mud and gypsum [166], phosphogypsum [167], furnace slags [168], min-
ing waste [169], water treatment sludge [170–172], bagasse ash [129], wood ash [173],
biosolids [174], biomass ashes [175,176], and waste fibers [177]. A review of industrial solid
waste used in barriers is presented by [27].

Unfortunately, much of this research has not yet come into practice. Conventional
CCLs, GM, and GCLs are still the general constituents of bottom liners. Environmental
regulations governing liner materials, testing procedures, and performance standards



Sustainability 2025, 17, 1850 19 of 31

vary across jurisdictions, and it is crucial to align research findings with these frame-
works. A comparative analysis of global regulatory standards, such as the European Waste
Framework Directive, the U.S. Environmental Protection Agency (EPA) landfill regulations,
and international ISO guidelines, can provide valuable insights into best practices and
compliance strategies.

Moreover, policy-driven research should explore how alternative liner materials can
meet existing regulatory requirements or drive the development of updated standards. En-
gaging with policymakers, industry stakeholders, and environmental agencies will facilitate
the integration of sustainable liners. Future research should also examine economic incen-
tives and funding mechanisms that support the adoption of eco-friendly liner solutions,
ensuring their feasibility and long-term success in waste containment infrastructure.

8. Discussion
The authors have developed Tables 6 and 7, summarizing future trends for investiga-

tion of liners structures and materials, respectively. These barriers help prevent hazardous
substances in the soil or water, mitigating environmental risks for the sustainable use of
natural resources [32]. Effective geotechnical and hydraulic barriers prevent soil erosion
and landslides, and provide better management of water resources; in addition, landfilling
can redevelop brownfield sites, promote sustainable land use and urban planning, and
contribute to the overall well-being of society [178].

Due to a future shortage of natural resources in addition to the growing generation
of waste, the following is the main finding emerges: to reduce the amount of waste
generated and to develop strategies to prevent the contamination of soil and water by
waste [65]. This paper indicates that this can be achieved by combining waste management
and structural design optimization. Designs should involve the use of new and feasible
materials, the enhancement of properties, laboratory data analysis, and modeling different
solicitation scenarios.

From the authors’ perspectives, environmental protection aligns with both the global
context and the specific challenges and opportunities within the country. Specifically,
Portugal’s main points to consider are coastal protection as a result of long and vulnerable
coastal ecosystems, and better water management of fluvial and pluvial waters due to
periodic droughts providing support for agricultural supply, a very important Portuguese
economical sector. Agriculture is also impacted by the sustainable land use abovemen-
tioned, preserving fertile soil, monitoring land degradation, and conservating biodiversity.
As Portugal attracts a significant number of tourists, and its cultural heritage sites are
important for the economy, this will encourage investments in renewable energy infras-
tructures, urban planning and redeveloped of degraded areas. This perspective aligns
with both national priorities and broader efforts to achieve environmental sustainability.
Global action and personal attitudes toward environmental protection are multifaceted and
often involve education for environmental consciousness and awareness campaigns and
initiatives, which can help people understand how their actions impact the environment
and their role to protect ecosystems, lead to governments supporting companies, and
also support industries that prioritize ecosystem protection, also promoting regulations
for responsible use of resources. This highlights the importance of joining individuals,
researchers, practitioners, and politics to influence the processes.

While this paper provides a review of liner materials, we acknowledge the need for
further research into sustainable and innovative materials [179]. Future investigations
should focus on emerging alternatives such as bio-based geomaterials, recycled indus-
trial by-products, and composite liners that integrate various waste streams to enhance
performance. Microbial-induced [180] or nature-based solutions [181] may also provide
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sustainable solutions with self-healing properties, reducing maintenance costs and ex-
tending service life. Additionally, novel structures, such as multi-layered hybrid liners
combining natural and synthetic materials, should be explored for their potential to opti-
mize hydraulic conductivity, mechanical stability, and chemical resistance in landfill and
water containment applications [109]. To address this research gap, future studies should
include laboratory testing, numerical modeling, and the field-scale validation of alternative
materials and structures. By expanding the scope of materials and structural innovations,
geoenvironmental engineering can move towards an environmentally friendly liner system.

While the Discussion approached the impact of liner structures on air quality, soil
contamination, and water pollution, a more comprehensive evaluation of long-term ecosys-
tem health and biodiversity effects is needed [113]. Liners play a crucial role in preventing
the migration of contaminants; however, their influence on microbial activity, soil fertility,
and local biodiversity remains underexplored. The potential leaching of chemical com-
pounds from liners, including heavy metals and microplastics from geosynthetics, must be
thoroughly assessed through long-term monitoring studies. Nonetheless, future research
should incorporate ecological impact assessments that evaluate changes in vegetation cover,
groundwater-dependent ecosystems, and aquatic biodiversity near containment facilities.
Additionally, life cycle assessments (LCA) of liner materials should be conducted by inte-
grating these factors into liner design and implementation [182]. To strengthen this aspect,
we highlight other authors who have incorporated detailed case studies that evaluate
liner performance in operational waste containment sites, tailings dams, and wastewater
treatment facilities. Several aspects like site-specific challenges, material selection criteria,
and long-term monitoring data to assess structural integrity, permeability behavior, and
environmental compatibility, improve the literature on the topic. Moreover, pilot-scale
projects and full-scale field applications should be explored to validate the findings of
laboratory experiments.

However, the complexity of liner behavior is well-known, requiring advanced method-
ologies to accurately assess their mechanical, hydraulic, and chemical performance over
time. Future research should incorporate high-resolution geophysical monitoring tools,
such as electrical resistivity tomography and ground-penetrating radars, to detect struc-
tural changes and potential leakage in liners [183]. Additionally, integrating numerical
modeling approaches and computational fluid dynamics can improve predictions of liner
performance under varying environmental conditions. Advanced statistical models and
machine learning techniques should be employed to analyze large datasets and identify
trends in material behavior [184].

The main contribution of this state-of-the-art review is related to providing a com-
prehensive overview of the literature, helping students, researchers, and practitioners,
along with the tables and figures designed by the authors. Figure 1 analyses bibliometric
aspects to identify trending keywords and subjects while reviewing the theme, like yearly
distribution and the main countries where it is studied. Tables 1, 2 and 5 identify the toxicity
limits for several governmental directives, the main parameters to classify a material as
liner-usable, and the usually used clays properties. They represent the available prospects
for researching alternative materials. Then, evaluating the properties of a candidate as s
liner, Figure 5 shows the cycle that should be assessed when dealing with “forever chemi-
cals” contaminants, going over identification, quantification, and remediation techniques,
substitute analysis, and directives development for mitigating environmental pollution.
And, regarding the practical application of new materials, Tables 6 and 7 investigate gaps
and topics that should be linked with Figure 7 liner design, according to the on-going
regulation of construction. The integration of all that knowledge, synthesizing information
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from the main references on geotechnical, hydraulic, and environmental aspects, should be
used as a guideline.

Table 6. Investigation trends for liner infrastructures.

Main Investigation Investigation Area References

Waste management Landfilling techniques [185–189]
Waste valorization [190]

Monitoring Storage instrumentation [8,9,107]
Containment instrumentation [191]

Structural Storage design [3,51–53,55–58,192,193]
Containment design [194,195]

Waste treatment Bioremediation techniques [196–198]

Table 7. Investigation trends for liner materials.

Main Investigation Investigation Area References
New materials GCL with recycled materials [141,142]

Geocomposites [149,150]
Bentonite–soil mixtures [122,123,125,166,199–204]

Bentonite design [121,205–207]
Soil–waste mixtures [27,28,169,172,175,208–212]

Properties enhancement Geomembrane durability [132–134,138]
Geomembrane reinforcement [135]

Geomembrane–polymer additive [140,141]
Bituminous [149,150]

CCL-biogeopolymer [110,114,213–215]
CCL chemical enhanced [112,113,115,116,121,216–218]

CCL leaching compatibility [108]

Modeling behavior GCL layer design [107,162,219]
GCL long-term [220–223]

GCL compatibility [107,116,224]
Geomembrane long-term [139]

Geomembrane stress scenario [153,154]
CCL durability [125,225,226]

CCL compaction [120,184,201]
CCL thermal effect [219,227–229]
Long-term design [111,120,125,225,230]

Workability Testing methodology [163,164]
Interface interaction [149,155,231]

Construction technique [161,232]

Regarding scientific innovative pathways and strategies, the review mainly over-
looked green technologies and sustainable infrastructure, which embrace circular economy
principles using nature-based, biotechnology, and bioengineering solutions. Indeed, smart
technologies, such as AI and the Internet of Things (IoT), attached to environmental ob-
jectives are the future for sustainability investigations. Developing and implementing
green technologies, such as renewable energy systems, sustainable building materials, and
eco-friendly infrastructure, and innovation in construction and engineering practices can
contribute to environmentally friendly solutions.

9. Conclusions
This study reviewed the properties, parameters, and applicability of geomaterials used

as liners for environmental protection, with a focus on their geotechnical and hydraulic
behavior. The analysis highlighted key materials such as CCL, GCL, and alternative
industrial by-products, demonstrating that while traditional materials are widely used,
innovative materials, such as waste-based liners, can enhance environmental sustainability
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while maintaining the required performance standards. The research also examined design
optimization, structural integrity, and contamination control, reinforcing the importance of
the proper selection, testing, and implementation of geomaterials for waste storage and
containment applications.

Despite these advances, further research is necessary to improve the facts that:

- CCL research is increasingly focused on modifying CCL with biogeopolymers to
improve durability and hydraulic performance; exploring chemical additives to re-
duce permeability and enhance compatibility with leachates; analyzing the impact of
different waste leachates on CCL integrity, ensuring long-term stability; and assessing
the influence of compaction parameters and temperature variations.

- GCL investigations are integrating recycled materials to improve sustainability and
reduce costs, focusing on long-term performance, especially regarding chemical resis-
tance and mechanical stability; and studies are refining the design of GCL layers to
enhance their hydraulic properties under various environmental conditions.

- Geomembranes studies are exploring long-term chemical exposure, temperature fluc-
tuations, and mechanical stress; the feasibility of using recycled polymers while main-
taining barrier efficiency; and assessing the interaction with different liner materials,
optimizing performance for landfill and wastewater applications.

- Industrial by-products valorization focuses on incorporating industrial waste materi-
als such as slags, ashes, and sludges to develop cost-effective, sustainable liners; deter-
mining the most effective waste–soil mix ratios to achieve low permeability and high
stability; overlooking microbial activity and chemical reactions within this interaction.

- Instrumentation and monitoring advanced sensor technologies are being explored in
real-time monitoring systems, including IoT-based sensors, which can improve the
detection of leaks and performance changes in liners; the use of AI-driven predictive
modeling is emerging as a tool to optimize liner design and performance assessment
for numerical modeling.

Nonetheless, the waste crisis is an ongoing phenomenon which is affecting economic
and environmental aspects of society, waste management techniques, and regulatory frame-
works, and sustainable measures are being investigated to mitigate soil and water con-
tamination. Regarding those structures, the most studied subjects are design optimization,
waste management directives, and the most important, monitoring and instrumentation of
the construction itself, attaching numerical modeling to long-term, durability, and extreme
scenarios simulation.

Thus, there are other types of materials, like by-products mixtures, which enhance
the performance of liners in environmental sealing. Geotechnical feasible residues and bio-
and nature-based materials, with straight directives for valorization, emerge as innovative
solutions. Following this, economic and geoenvironmental sustainable actions can be
achieved and improved.
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