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Abstract: In this paper, the tensile capacity and anchorage required for making the 
geomembrane – soil interface stable against sliding have been evaluated for an old 
MSW waste dump. Four methods of analysis have been used – two infinite slope 
analysis (ISA) and two finite slope analysis (FSA) methods. Slope inclinations are 
varied from 3.0H:1.0V to 1.5H:1.0V and heights between berms are taken as 5 m and 
10 m. The tensile capacity required to stabilize a slope as steep as 1.5H:1.0V, 
calculated from all the methods, varies between 33 to 85 kN/m for berm height of 5 m 
and 90 to 170 kN/m for berm height of 10 m. Estimation of anchorage capacity for 
run – out and trench anchor has been done by four methods – Koerner (2005), Qian 
et. al. (2002), Sharma and Lewis (1994) and Villard and Chareyre (2004). For run – 
out anchor, the anchorage capacity for 2 m wide berm is observed to lie between 30 to 
46 kN/m. This increases to the range of 48 to 110 kN/m for trench anchor. These 
capacities are adequate for anchorage of geosynthetics when height between berms is 
limited to 5 m. The present study demonstrates the wide variation in results obtained 
by different methods and the need for improving the current practice. 
 
INTRODUCTION 
    
   For recovery of gas from MSW waste dumps and landfills, cover systems having 
geomembrane as a component of the barrier system are used. Geomembrane (GM) 
prevents the escape of landfill gases, but inclusion of GM inserts a weak interface in 
the cover system. GM-soil interfaces have low shearing resistance and thus the 
stability against slippage along these interfaces offers a problem. In such cases, 
stability of the cover system can be enhanced by utilizing the tensile strength of the 
geomembrane as well as introducing high strength geogrids/geotextiles as veneer 
reinforcement in cover systems. These geomembranes and geogrids/geotextiles are 
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then anchored at the berms on intermediate locations along the slope. Usually the 
contribution of the geomembrane is a small fraction in comparison to that of the high 
strength geogrids/geotextiles. 
   The stability of cover systems of landfills depend partly on the tensile strength of 
the reinforcement and partly on the efficiency of the anchorage of the reinforcement 
at the berms. The most common types of anchors are simple run-out anchor, V – 
shaped anchor or rectangular shaped anchor in a trench along the berm. Since berms 
have limited widths (usually 2 to 3 m), the reinforcements are often buried in trenches 
to increase the anchorage capacity.  
   At an old waste dump in the eastern region of national capital of India, an 
impermeable cover was provided along the side-slopes and on the top of a small area 
of the dump as a part of a pilot landfill gas extraction project. At some locations, 
slopes were as steep as 1.9H:1.0V and cover (with HDPE geomembrane) had to be 
provided without flattening the slope. A combination of reinforcement and geocells 
was used (Datta 2014). The possibility of using such covers in slopes as steep as 
1.5H:1.0V is the prime factor that has resulted in this study. 
 
OBJECTIVE AND SCOPE 
 
   The present study investigates the following aspects of stability of MSW landfill 
cover systems with gas recovery: 
a) Identify the variations obtained by using four methods of stability analysis on 

i. The factors of safety of cover slopes. 
ii. The long term tensile capacities of geosynthetics required for ensuring stability. 

b) Examine the differences in four methods of evaluating anchorage capacity of 
geosynthetic reinforcement embedded on berms and identify the variations in the 
capacities of run – out anchor and rectangular trench anchors. 

c) Examine whether the required tensile force generated in the reinforcement can be 
withstood by anchorage developed along the berm at top of the slopes for slopes as 
steep as 1.5H:1.0V. 

   The study has been carried out for slope inclinations varying from 3.0H:1.0V to 
1.5H:1.0V, for heights between berms of 5 m and 10 m and berm width of 2 m. The 
analyses have been done for the case of dry slope only. For flow parallel to outer 
slope as well as for earthquake, the acceptable factor of safety is lower than 1.5, and 
depends on submergence ratio. The effects of these parameters have not been studied, 
as the objective of this study is to highlight the variability in results. 
 
LITERATURE REVIEW  
 
   Stability is the primary issue for cover systems on steep slopes. A combination of 
low interface values between geosynthetics or between geosynthetics and soil and 
steep slopes gives rise to failures. The use of high – strength geotextiles and geogrids 
to provide structural support to cover systems has been widely reported in the 
literature (Christopher 1991, Carroll and Chouery – Curtis 1991, Koerner 1998). The 
basic design for structural support consists of identifying the failure plane and 
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evaluating the corresponding factor of safety, and thus selecting the required support 
to achieve the acceptable factor of safety.  
   There are basically two different kinds of methods presently available in the  
literature for the stability analysis of cover slope systems under static conditions, 
namely the infinite slope analysis (ISA) methods and the finite slope analysis (FSA) 
(two – wedge) methods. 
   ISA methods apply for the case where the thickness of the sliding mass is very 
small compared to slope height. The free body diagram showing the forces and 
stresses acting on a soil volume on an infinitely long slope is shown in Fig. 1.  
 

  
FIG. 1. Limit equilibrium forces associated with ISA method for a slope with 
veneer reinforcement 
 
   When veneer reinforcement with long term (allowable) design strength (LTDS) of T 

is inserted in soil mass, it opposes the driving force (imparted by overburden material) 
along with the frictional resistances developed at any particular interface (c + N tanδ). 
Typically in multi – component cover systems, low shear strength interface is located 
beneath the veneer reinforcement. The factor of safety (FoS) is calculated as the ratio 
of summation of resisting forces to summation of driving forces. Now, based on 
whether T in the veneer reinforcement would be added to the resisting forces or 
reduced from the driving forces, two different methods can be defined: 
 
ISA- Enhanced Resisting Force (ERF) 
   In this method, T is added to the resisting forces acting on the interface under   
consideration, and hence for any interface having an interface friction angle of ߜ 
inclined at an angle ߚ with the horizontal, FoS can be defined as in Eq. 1. L is the 
slope length for a berm height of H. ܵ݋ܨ = ௧௔௡	ఋ௧௔௡	ఉ + ௖ఊ௛	௦௜௡ఉ + ்௅ఊ௛	௦௜௡ఉ                                      (1)   

                                
ISA- Reduced Driving Force (RDF) 
   When T is deducted from the net driving forces due to self-weight of the cover soil, 
FoS can be defined as shown in Eq. 2. 
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FoS = 

೎ം೓		ା		 ೟ೌ೙ഃ೟ೌ೙ഁ	ଵ	ି		 ೅ಽം೓	ೞ೔೙ഁ			                                                             (2) 

    
   In the FSA methods (also known as two-wedge methods), apart from the above 
forces, the resistance offered by the passive wedge at the toe of the slope is also 
included. This method assumes that the entire sliding block comprises of two wedges 
(refer Fig. 2): wedge ABCE or A′BCE, which is the active wedge, and wedge DEC 
which is the passive wedge that offers the toe buttressing effect. The inherent 
assumptions in these methods are that the inter – wedge interface EC is vertical and 
force P transmitted between the two wedges across EC is parallel to slope. Giroud et. 
al. (1995) adopted the two – wedge method of analysis to deduce the expression for 
factor of safety. Fig. 2 shows the schematic representation of this approach where 
A′BCE is the active wedge and DEC is the passive wedge. The forces are balanced 
parallel to the slope to arrive at Eq. 3. The most important feature of this method is 
that it quantifies the contribution of each governing parameter separately, which 
enables in evaluating the stability of a layered system on slopes under progressive 
deformation, as strength of each component is not mobilized simultaneously. Also, it 
simplifies design calculations. 
ܵ݋ܨ  = ୲ୟ୬ఋ୲ୟ୬ఉ + ௖	௖௢௦∅ఊ௛	௦௜௡ఉ	ୡ୭ୱ(ఉା∅) + ௧	௦௜௡థ௛	௦௜௡ଶఉ	ୡ୭ୱ(ఉା∅)	 + ௔ఊ௧	௦௜௡ఉ + ்ఊு௧              (3) 

 
   Koerner and Soong (1998) also adopted the two – wedge method for analyzing 
veneer slope stability problem. Their analysis method was refinement of the approach 
taken by Koerner and Hwu (1991). Unlike Giroud et. al.’s approach, this approach 
assumed a tension crack at the crest, as shown in Fig. 2 by A – B, and balanced the 
forces in the vertical direction. Eq. 4 shows the expressions for calculations according 
to this method. 

  
a= (WA – NA cosβ – T sinβ) cosβ 

b= - [(WA – NA cosβ – T sinβ) sinβ tanϕ + (NA tanδ + CA) sinβ cosβ + (C 
+WP tanϕ) sinβ] 

c= (NA tanδ + CA) sin2 β tanϕ                                        ܵ݋ܨ = 	−ܾ + √௕మି	ସ௔௖ଶ௔                                                                              (4) 
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FIG. 2. Limit equilibrium forces associated with FSA methods for a slope with 
veneer reinforcement 

 
   The tensile force, T generated in the reinforcement to stabilize the cover system on 
slopes has to be resisted by the anchorage, Tanch developed along the slope due to 
embedment of the reinforcement at the berms where the geosynthetic is anchored 
(refer Fig. 3).      
 
 
 
 
 
 
 
 
 
 

 
FIG. 3. Development of Tanch at berms 

 
Existing design methods for simple run – out anchors and trench anchors (refer 

Figs. 4 and 5) have been developed for geosynthetic sheets and can be categorized on 
the basis of assumptions regarding increase in tensile strength at bends. The 
assumptions vary from (a) frictionless pulley, where tension in the sheet remains 
unaffected at bends to (b) tension increases at bends due to increase in normal stress 
caused by inclination of geosynthetic tensile force and (c) frictional pulley, where 
tension in sheet increases at each bend by a factor.  

 The assumption of frictionless pulley at every bend was adopted by Sharma and 
Lewis (1994). This yields the most simplified but conservative method of analysis, 
where the tension in the sheet remains unaffected at bends and slope inclinations. For 

WA=weight of active wedge 
WP=weight of passive wedge 
NA= normal eff. force of active 
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simple run – out anchors, Koerner (2005) assumes that in addition to the frictional 
resistance mobilized at the interface due to deformation/slippage, additional normal 
stress is generated due to inclination of Tanch; the value of which is equal to its 
vertical component. Qian et. al (2002) developed a method which is a combination of 
the approaches taken by Sharma and Lewis (1994) and Koerner (2005). This method 
assumes a frictionless pulley at 90° bends, and it also considers the effect of 
increment in normal stress due to inclination of Tanch. Villard and Chareyre (2004) 
proposed an analytical method to estimate pullout strength provided by anchors, 
based on experimental investigations conducted on anchored geotextiles in sandy silt 
and sand (Chareyre et. al. 2002). This method considered the increment in tension in 
geosynthetic sheet at the bends by assuming a frictional pulley. The increment is a 
function of angle at the bend, β and is expressed by a factor K = exp(β tanδ). Two 
failure mechanisms, namely [1] failure at soil-geosynthetic surface and [2] failure in 
soil mass on which geosynthetic sheet rests were taken into account. The failure 
mechanism to be considered depends on the type of soil mass on which the 
geosynthetic is placed and the function of the geosynthetic sheet.  

For an anchor trench, while all the described methods assume K0 condition for 
normal stress on the vertical segment of sheet buried in trench, Koerner’s method 
assumes active or passive earth pressure, depending on the side being considered. 

 
ANALYSIS 
 
   The final cover cross-section for a typical MSW landfill having gas collection 
system chosen in this study consists of a topsoil cover to support vegetation, a sand 
drainage layer for draining and a composite barrier (GM textured and compacted clay 
liner) in top-down order.  
   The properties of soil used for the analysis are given in Table 1 and the interface 
parameters are listed in Table 2. The values are taken from the literature (Datta 2014, 
Koerner and Narejo 2005). 
   Geomembrane – to – clay (GMtextured – clay) interface being the weakest interface in 
the cover system is considered as the critical interface governing the stability of the 
entire cover system. The interface friction angle for a textured – geomembrane 
(GMtextured) to clay is 18◦ for the peak and 16◦ for the residual conditions. Choice of 
peak or residual values depends on the relative movement anticipated between the 
geomembrane and clay during installation. In the present study, the peak value is 
adopted. The adhesion of the geomembrane to clay is neglected. 
 

Table 1. Soil Properties  
 

Soil layer 
Cohesion 

(kPa) 
Friction 
angle(◦) 

Unit weight 
(kN/m3) 

Topsoil 0 30 18 

Drainage sand 0 32 20 

Compacted 
Clay 

15 0 20 
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 Table 2. Interface Parameters 
 

Interface 
Friction angle(◦) Adhesion (kPa) 
Peak Residual Peak Residual 

GM textured-clay 18 16 10 0 

Drainage Sand- GM textured 30 28 8 0 

    
Ten different inclinations and two different heights of berms provided in a landfill 

were chosen for the present study. Heights considered were 5 m and 10 m. The 
inclinations ranged from 3.0H:1.0V to 1.5H:1.0V. They were chosen so as to 
represent the gentle slopes in new landfills and steep slope conditions encountered in 
old waste dumps. The desired factor of safety for slope stability is 1.5 and where this 
value is not achieved, T required to stabilize the cover system has been computed. 

Two cases of anchor system have been analysed; (a) run – out anchor which is 
embedded along 2 m width of berm (refer Fig. 4) and (b) rectangular trench anchor 
which is embedded after 1 m in a trench of depth 0.5 m and width 1 m (refer Fig. 5). 
Wider berms have not been considered as they result in average slope become flatter 
over the full height of the landfill. Also, lack of availability of horizontal space to 
make wider berms limits resizing of anchor trench. 
 
 
 
 
 
 
 
 
 
 
FIG. 4. Landfill cover system with run – out anchor  

 
 
 

 
 
 
 
 
 
 
 
 
FIG. 5. Landfill cover system with rectangular trench anchor 
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using infinite slope analysis. High strength geogrids/geotextiles can provide the 
tensile capacity required to stabilize soil along interfaces of geomembrane – soil 
for steep slopes (1.5H:1.0V) with height between berms of 5 m. 

b)    The anchorage capacities offered by 2 m wide berms are inadequate to resist 
the tensile force developed in reinforcements along steep slopes (1.5H:1.0V) 
with height between berms of 5m, if run – out anchor is used. The capacities are 
enhanced by the use of trench anchor and these meet the requirements for 
stabilizing slopes of inclinations as steep as 1.5H:1.0V. 

c)    There is a wide variation in magnitudes of tensile capacities required as well as 
anchorage capacities offered when different computational methods listed in 
literature are used. More data from the field practice as well as laboratory studies 
can help reduce variability in design results. 
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