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Key Points:6

• We have developed the potential field imaging theory to estimate the depth of7

current sources in Mise-à-la-masse surveys8

• Synthetic and field applications of a landfill leakage is demonstrated9

• An Open-source code for inversion of voltage using potential field imaging theory10

is provided.11
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Abstract12

Traditionally interpretation of MALM is limited to the visualisation of equipotential13

contours in order to infer qualitatively the extent of the anomaly. Mise-à-la-masse14

(MALM) inversion algorithms rely on having a good knowledge of the electrical resis-15

tivity distribution in the subsoil. Conversely, potential imaging methods have shown16

their strength for several applications to quickly estimate the depth of sources even in17

highly heterogeneous media. In the case of the MALM method, the physics may be18

described by Poisson’s equation. As the conductivity term is modulating the flux of19

current, MALM is generally referred to as a pseudo-potential method. In this work, we20

have tested, for the first time, the application of the potential field theory to MALM21

in order to identify the current source depth. Synthetic modelling shows that the22

proposed algorithm is effective and efficient, using surface voltage measurements for23

different resistivity contrasts, anomaly depths and noise levels. We then applied the24

method to the real field case of a landfill leakage and showed how very different source25

depth estimates result from an intact or a damaged landfill liner.26

Plain Language Summary27

The so-called Mise-à-la-Masse (MALM) technique is a well-known active geo-28

electrical prospection method aimed at imaging (qualitatively) electrically conductive29

(often ore) bodies in the subsurface. The current is injected in the core of the body to30

prospect, and the high electrical conductivity of the body channels the current making31

it detectable from the anomalies of electrical potential measured, e.g., at the ground32

surface. Verification of landfill liner integrity is one of the most recent applications of33

MALM, exploiting the electrical and hydraulic separation, often made with a plastic34

liner, between the conductive waste inside and the soil outside. Holes in the liner may35

be imaged inducing a passage of DC current between the inner and the outer part of36

the landfill, provided that the location of such holes be identified using an efficient37

MALM inversion. For this purpose, we adapted an algorithm used for voltage inver-38

sion to MALM: the approach has proven effective using synthetic modelling and was39

successfully applied to real field data from an industrial landfill.40

1 Introduction41

The Mise-à-la-Masse (MALM) method is a variation of the classical geo-electrical42

investigation approaches, in which DC current is injected into the ground by two elec-43

trodes and the difference is measured between two other points. MALM was originally44

developed to delineate the shape of electrically conductive mineral bodies for mining45

exploration purposes (Parasnis, 1967; Schlumberger, 1920). MALM traditional imple-46

mentation assumes that the conductive (ore) body channels current in such an effective47

manner so that the characteristics of the surrounding medium are irrelevant and inter-48

pretation can be limited to the qualitative shape of the voltage map distribution, the49

contour isolines giving an estimate of the anomaly extent and orientation. This classic50

MALM approach has found different applications in recent times, in situations where51

it is useful to verify the electrical connection between one portion and another of the52

subsoil (e.g. De Carlo et al., 2013; Mary et al., 2020, 2018; Perri et al., 2018; Peruzzo53

et al., 2020). The MALM approach holds under the assumptions that the contrast be-54

tween the conductive body and the background is high and that the conductive body55

is accessible and has a relatively large volume. Applications at landfill bodies are of56

particular interest where the aim is to verify the connection between the inside and57

outside of the waste mass, e.g. in presence of a plastic liner which represents, when58

undamaged, both a hydraulic and an electrical barrier. In this type of application, the59

interpretation of MALM data is often non-trivial and requires modelling of DC cur-60

rent flow and a reconstruction of the, often poorly known, subsoil heterogeneities. A61
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number of different approaches have been proposed and used to this end, in particular62

in search for the depth of localized anomaly sources (Binley et al., 1999; Wondimu et63

al., 2018; Shao et al., 2018; Ling et al., 2019; Mary et al., 2020; Peruzzo et al., 2020).64

A priori information is always needed to guide the result (de Villiers et al., 2019) and65

a correction for the influence of the resistivity on the current density distribution is66

needed.67

A large body of literature exists regarding potential field imaging using non-68

iterative (i.e. no inversion in a strict sense) processing, to estimate the location and69

depth of sources. Up to now, potential field imaging tools have been reserved to70

passive methods analysis such as self-potential, gravity or magnetic surveys. Patella71

(1997) formulated an approach to self-potential (SP) data interpretation where the72

inverse problem is solved using cross-correlation of the field with a scanning source73

(the electric field generated by an elementary positive charge). Lapenna et al. (2000)74

applied that approach to outline the SP source geometry and dynamics within a faulted75

structure. In their review article, Fedi and Pilkington (2012) discuss a number of76

existing algorithms and note that all such methods have in common two steps: the77

upward continuation of the field and a depth weighting factor (scaling function) to78

identify the source location.79

The upward continuation of the field is generally performed via Fourier transfor-80

mation. An alternative powerful approach is the use of Continuous Wavelet Transform81

(CWT - Bhattacharya & Roy, 1981; Gibert & Pessel, 2001; Abdelrahman, El-Araby,82

Abo-Ezz, Soliman, & Essa, 2008; Agarwal & Srivastava, 2009; Srivastava & Agarwal,83

2010; Saracco, Labazuy, & Moreau, 2004).84

Among other algorithms, the so-called Depth from Extreme Points (DEXP -85

Fedi, 2007; Fedi, Florio, & Cascone, 2007) has been especially conceived with the86

possibility of using the field spatial derivatives to improve the resolution and a more87

accurate weighting law depending on the so-called Structural Index (SI) of the source.88

An automatic DEXP imaging method independent from the value of the SI of the89

causative source was also proposed later to add flexibility to the procedure (Abbas &90

Fedi, 2014; Abbas et al., 2014). More recently, Baniamerian et al. (2016) introduced91

the compact-DEXP (CDEXP) algorithm for fast modelling the potential field anomaly.92

The DEXP transformation and the Continuous Wavelet Transform belong to different93

theories but present some similarities (Fedi et al., 2010; Fedi & Pilkington, 2012). The94

key difference between DEXP and CWT is the respective choices of the power-law95

exponent. In the DEXP case, the exponent depends on the differentiation order and96

the source properties (through the SI), while in the CWT formulation the exponent97

depends only on the differentiation order (Revil, 2013). Fedi (2007) discussed the98

pro and cons of using an imaging against an inversion approach for source depth99

estimation, since inversion codes of natural potential field also proved their efficiency100

for spontaneous potential (Soueid Ahmed et al., 2013) and gravity (Fedi, 2007; Florio &101

Fedi, 2018). Note that Fedi et al. (2010) show that for CWT (and DEXP) the influence102

of a heterogeneous resistivity distribution (three orders of magnitude differences) is103

negligible on source depth estimation. As suggested by Liu et al. (2020), the imaged104

model (using CWT or DEXP) may always be used as a reference or a starting model105

during a subsequent inversion process.106

In this paper we describe a new approach that uses the DEXP theory to interpret107

MALM surveys to derive approximate source location. The main steps involve (a)108

synthetic modelling in order to verify to what extent the physics governing MALM109

is compatible with the potential theory imaging method (reported in the Supporting110

Information); (b) application of the modified DEXP algorithm (in the sequel, named111

pyDEXP) to a synthetic and a real MALM datasets, both related to the identification112

of leakage from an industrial landfill.113

–3–

 21699356, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024747 by <
shibboleth>

-m
em

ber@
m

onash.edu.au, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

Figure 1. Geometry of the landfill case study: only the South-East corner, around which a

leak in the vertical liner was suspected, is sketched here. The inner part of the landfill corre-

sponds to the blurred red area of the figure. Dashed red line show the symmetry of the survey

with A, B and M electrodes aligned. Depth section (yz) showing the possible location and size of

the hole (red square) and the position of the water table (dashed blue line)

2 Case study114

The case study we present concerns an industrial landfill in Northern Italy, having115

the following characteristics:116

1. The contaminated part of the site consists of an area of about 2 hectares sur-117

rounded by a physical barrier, 16 m deep, made of a trench filled with clayey118

material having an embedded vertical HDPE (plastic) membrane. The water119

table is positioned practically at the ground surface. No bottom liner exists.120

2. The sediments are silty, saturated by brackish water for which we can assume121

an electrical conductivity of about 0.5 S/m. Assuming a reasonable formation122

factor of 5, we expect the saturated formation to have an electrical conductivity123

of about 0.1 S/m, i.e. an electrical resistivity of 10 Ω.m.124

3. Given the presence of brackish water, one can assume that the resistivity of the125

entire system, inside and outside the landfill body, is homogeneous and equal to126

10 Ω.m, with the single most notable exception of the barrier itself, where the127

HDPE lines corresponds to an exceedingly large resistivity anomaly (fig 1).128

–4–
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The current injection electrode A was placed 12 m deep in a monitoring borehole129

inside the landfill (fig 1). The current return electrode B and the reference voltage130

electrode N were placed remotely while the rover voltage electrode M was moved on a131

regular grid of 10x10 m (fig 1). The fixed electrodes A, B, N all lie on the diagonal of132

the South-East corner of the landfill (fig 1): in this way any lack of symmetry of the133

resulting voltage measured at the ground surface would be indicative of a discontinuity134

in the HDPE barrier. Note that current can flow anyway from the interior to the135

exterior of the landfill primarily below the lateral barrier, at a depth of about 16 m136

from the ground surface, where the HDPE liner ends. Therefore, in absence of any137

liner discontinuity, the voltage map at the surface should be symmetric with respect to138

the diagonal of the landfill corner. MALM data were collected in October 2019 using a139

Syscal Pro (Iris instrument). Both normal and reciprocal configurations (e.g. Binley,140

Ramirez, & Daily, 1995) were collected in order to ensure optimal data quality. The141

details of the synthetic modelling for survey design, of data processing and imaging142

using DEXP are given in the Supporting Information.143

3 Methods144

3.1 Upward continuation of the potential field145

The first step common to all potential field processing methods consists in creat-146

ing a 3D potential field from the data measured along a surface (typically, the ground147

surface at z=0) and is performed in this study via upward continuation of the sur-148

face data u. This is possible because no source of potential field is present above the149

ground surface. Blakely (1995) formulates the continuation through the Fast Fourier150

Transform in the wavenumber domain as:151

F (Uup) = F (u)e−∆z|k|, (1)

and then transformed back to the space domain. Uup is the upward continued data,152

∆z is the height above the measurement plane, F denotes the Fourier Transform, and153

|k| is the wavenumber modulus. A particular attention must be given to assigning the154

right input parameters with regards to the resolution needed, i.e. the z discretization.155

3.2 Analysis of the field and its derivatives by the DEXP method156

Among all possible ways to analyse the potential field, we propose here an im-157

plementation of the DEXP method, as this is flexible enough to estimate source depth158

density from MALM data and provide a fast image of the source possible distribution.159

In particular, we take advantage of its automatic Structural Index identification and160

its good resolution using the derivatives of the potential field.161

The final step consists in scaling the field in order to obtain the depth of the162

source via the DEXP transformation. Fedi (2007) defined the DEXP transformation163

as:164

Ω(r, zi) =
∣∣∣z N

2
i

∣∣∣Uup(r, zi) (2)

with i=1,...,L, and where Ω(r, zi) is the DEXP-scaled field at the elevation zi, Uup(r, zi)165

is the field u upward continued at zi (with i being the layer number ranging from 1166

to L) and z
N
2
i is the DEXP power law. Applying the DEXP transformation to the167

qth order vertical derivative of the field, results in new DEXP operators (Fedi et al.,168

2010):169

–5–
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Ω(q)(r, zi) =

∣∣∣∣z (q+N)
2

i

∣∣∣∣ ∂qUup(r, zi)

∂zq
|z=zi (3)

and170

Ω(q)(r, zi) =

∣∣∣∣z (q+N)
2

i

∣∣∣∣ ∂qUup(r, zi)

∂x∂zq−1
|z=zi (4)

with i=1,...,L.171

Horizontal derivatives can be computed via finite difference or Fast Fourier Trans-172

form (FFT) calculation. On the contrary, for stability reasons only FFT can be used173

for the vertical derivative computation. A set of “ridges” that, according to Fedi’s174

theory (2007), are the extrema of the field and the vertical and horizontal derivatives175

of the upward continued field are formed. In this study, we refer to ridge types I and176

II respectively where the field horizontal or vertical derivative is zero, and ridge type177

III where the field itself is zero. While it was possible to consider analysis of ridges in178

order to define the structural index (N), we rather implemented the automatic DEXP179

method (Abbas & Fedi, 2014). The key point in eq. 5 below is that the DEXP ratio180

Rmn is independent of the structural index (N) and depends only on known quantities181

m and n, that is the difference between the orders of the field derivatives fm and fn.182

Rmn =
fm
fn

(5)

Ω(Rmn) = z
(m−n)

2 Rmn (6)

3.3 MALM and the potential field theory183

In order to process the MALM data, first of all we need to define the physics of184

the problem. At steady state, the governing partial differential equation (PDE) for185

the direct current problem is:186

∇ · σ∇V = −Iδ(r) (7)

where δ(r) indicates the Dirac delta positioned at coordinates r and thus indicating187

point current injection source(s). The voltage in resistivity methods is actually a188

pseudo-potential since it is modulated by the conductivity σ. If the conductivity189

of the medium is homogeneous the partial differential equation (PDE) simplifies to190

Poisson’s equation:191

∆V = Iδ(r) (8)

And in absence of current sources to Laplace’s equation:192

∆V = 0 (9)

The analogy of these equations with those of the gravitational field is, of course,193

apparent (i.e. given the gravitational potential U , the relevant governing equation is194

∆U = −4πγρ where ρ is density and γ is the gravitational constant). In order to195

correct for the influence of the return current electrode, thus removing the relevant196

–6–
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voltage contribution, we computed this contribution via the simple calculation of the197

potential V at a point P for a homogeneous soil in a semi-infinite conductor:198

V (P ) =
I

2πl
(10)

with I being the intensity of the current injected, and l the distance between the199

injection point and the point P.200

4 MALM imaging results on the landfill201

4.1 Voltage distribution202

The resulting voltage distribution in the actual MALM experiment is shown in203

figure 2 and compared against the results of the synthetic analogue used for survey204

design (see Supporting Information).205

The simulated voltage for the synthetic case clearly shows how the presence of a206

discontinuity in the HDPE vertical liner is visible in terms of voltage distribution on207

the ground surface (compare fig 2a and fig 2b). In the simulations the hole is 10 m208

wide and 8 m high, and its top is at 12.5 m depth from the ground surface.209

Figure 2c shows the synthetic results for the damaged liner case after mirroring210

(see Supporting Information for details) along the line parallel to the Southern border211

of the landfill (see fig 1). The procedure is needed in order to confirm the data (available212

in practice only outside of the landfill) with the theory that is designed to look for a213

point-like anomaly along a vertical plane of symmetry.214

As for the field data, a comparison between figures 2d and 2e shows how the215

correction for the influence of the current return electrode location changes the pattern216

and the amplitude of the normalised voltage distribution. After correction, the field217

data show with more evidence that the anomaly of electrical potential propagates218

outside the landfill area. Similar to the synthetic data, mirroring of the field data219

around the landfill lateral wall is needed for multi-ridge analysis as described in the220

DEXP approach (fig 2f).221

4.2 Estimation of leak point from field data222

The multi-ridge analysis in the DEXP approach is designed to identify the loca-223

tion of the source at depth. We conducted such an analysis using the MALM voltages224

collected during the field survey in a totally analogous manner as for the synthetic225

data described in the Supporting Information. The analysis is conducted in 2D along226

the line of Southern side of the landfill (fig 1). However, for the field data, many ridges227

appeared to be inconsistent disturbing their intersections. We cannot reach conclu-228

sions concerning the source depth based only on the geometrical analysis of the ridge229

intersections. However, the ratio DEXP analysis shows the source at approximately230

8m depth (fig 3).231

5 Discussion232

The use of the potential field imaging theory for the identification of MALM233

source depth due to current leakage (in the specific case, from a landfill) has pros and234

cons. When applied to passive prospection methods (such as self-potential or gravime-235

try), potential methods seek for a naturally induced source at depth. Conversely, in236

the MALM case, the field is induced by current injection via a pair of electrodes. The237

current propagates through the conductive body and is then diffused to the soil. In238
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Figure 2. normalised voltage distribution (voltage/injected current) at the ground surface for

synthetic data (left column) and field data (right column). (a) and (b) show respectively the sim-

ulated normalized voltage for an intact liner and for a perforated liner (the green point indicates

the position of a hole 10 m wide and 8 m high, with its top at -12.5 m from the ground), and

(c) after mirroring (section Supporting Information). (d) and (e) show the raw data for the field

case respectively before (d), after (e) correction for the influence of the return electrode, and (f)

after correction for B + Gaussian smoothing (see Supporting Information). The red dashed line

indicate the profile used for the DEXP analysis in fig 3.

this study the position of the current electrode was placed very close to the leakage239

point. The conductive nature of the inner landfill material reduces the effect of the240

actual location of the current location point, and conveys current towards the leak.241

The source producing the electrical potential is thus linked to the current circulation in242

–8–

 21699356, ja, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JB

024747 by <
shibboleth>

-m
em

ber@
m

onash.edu.au, W
iley O

nline L
ibrary on [10/11/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to JGR: Solid Earth

Figure 3. (a) upward continued section of the field data and its ridges lines from searches for

zeros of ridges RI, RII and RIII (see SI). (b) DEXP transformation using the automatic ratio

method between the derivative of order 1 and 0; the maximum (red dot) indicates the source

depth estimate.

the conductive body. As the MALM assumption relies on the fact that the conductive243

body is much more conductive with respect to the surrounding medium, we tested this244

assumption against the potential field imaging theory. Note that our MALM approach245

is aimed at identifying the source not the conductive body extent.246

The location of the MALM (A) electrode far from the leakage point would lead247

to a wrong estimate of the leak position. When moving A, most of the current spreads248

out under the liner instead of going through the hole (figure not shown). The potential249

field distribution is alike to a no-hole configuration and applying the DEXP procedure250

results in a wrong estimate of the depth. Considering the complex geometry of the251

landfill, a 3d DEXP analysis would help to identify the source position and depth.252

Indeed, running a 3d analysis would allow better discrimination between the residual253

background signal due to the current going under the landfill and the current going254

into the hole.255

Here for simplicity and by lack of data, although most likely the subsurface was256

heterogeneous due to highly conductive leachates relative to surrounding groundwater,257

we assumed an homogeneous soil during the correction of the influence of the electrode258

N position. In a preliminary study we found that the effect of the initial resistivity259

model i.e. the contrast of conductivity between the body and its surrounding medium260

does not affect the source depth position identification up to three orders of magnitude261

differences (see Supporting Information). This is in-line with Mauri et al. (2010) who262

show a similar result for the CWT case applied to SP signals (that is also conditioned263

by the electrical resistivity distribution). Also varying the noise level and source depth264

showed respectively no effect and small errors on the source depth detection using the265

DEXP ratio analysis.266

An important limiting factor of the potential field theory is the choice of the267

Structural Index matching the anomaly shape (Stavrev & Reid, 2007) which ultimately268

guides the choice of the depth weighting factor. This can be very difficult to assess in269

complex field sites. In the case of a landfill leakage, however, this is a minor problem as270

the anomaly can be considered point-like and isolated. This could explain why for the271

synthetic cases the estimated source parameters show very good agreement with the272

“true” values (both for gravimetric and MALM data – see Supporting Information).273
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An important issue to consider relates to the presence of domain boundaries. In274

a simple case, the only electrical boundary to consider is the soil/air interface. In the275

specific case of the described landfill, it is necessary to deal with the liner boundary. We276

removed the influence of the liner boundary by mirroring the data around the boundary277

before applying the upward continuation of the field. The outside part of the landfill278

was mirrored against a line parallel to the landfill side. The step is validated via279

synthetic modelling (see SI material) where the source depth was correctly estimated.280

Correcting for the pole source is most of the time not required for field application of281

MALM; and in other cases a reasonable estimation of electrical resistivity distribution282

can be obtained from ERT – in this case the correction is not really needed due to283

the homogenizing effect of the brackish water high electrical conductivity. Note that284

the survey described in this paper was likely the most penalizing case that we could285

encounter for leakage detection: for some cases the landfill is accessible and the remote286

electrode can be placed far away to avoid the correction step. For theses other easier287

cases less refined strategies shall be applied.288

This study shows that the estimation of source locations can be biased by a few289

factors, and in particular: (i) the quality of the data (ii) the stability of the upward290

continuation and of its spatial derivatives. About these factors, first of all, we note291

that the noise is confined to low elevations, due to the well-known smoothing effect292

of the upward continuation operator in the DEXP transformation. This noise was293

successfully removed fitting the ridges to a given range of altitudes. While an efficient294

way to isolate the anomalies is to vary the order of the differentiation of the field (which295

can be safely done thanks to the smoothing properties of the upward continuation), in296

this study the anomaly was easily identified only using the ratio between the first and297

the upward continued field.298

This approach overcomes some limitations of the classical inversion, yet potential299

field methods are subject to bias just like any other geophysical inverse problem. The300

potential field imaging of MALM does not converge perfectly to the exact location of301

sources if the resistivity model is very complex. At most, an approximate (and yet302

very useful) source location is identified. This is expected consistently with literature303

evidence. The best approach that can limit the natural uncertainty in source identi-304

fication is the use of synthetic modelling, based on solid assumptions concerning the305

expected anomalies distributions and source locations. The results of these exercises306

become fundamental in supporting the interpretation of the MALM results.307

6 Conclusions308

This study presents a successful application of MALM, a well-established geo-309

electrical method, using a novel processing approach. The information content of310

MALM is fully exploited using the potential field imaging theory. The results we311

present are relevant to both a synthetic study and a field case. The synthetics indicate312

that the proposed approach can estimate the source depth accurately considering a313

correction of the influence of the remote current return electrode. The field application314

exploited the theory to estimate the leak depth from a damaged landfill. Synthetic315

modelling reproducing the actual field conditions shows that an hole into the liner316

where the current can leak can be seen both from the multi-ridge analysis and DEXP.317

For the real case, the source depth analysis shows similar results than the damaged318

synthetic modeling.319

Data availability statement320

Codes and data to reproduce figures articles are available in the Zenodo data321

repository (10.5281/zenodo.6538070) and in to the Github (https://github.com/BenjMy/dEXP imaging/tree/master/notebooks JGR).322
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