
Page 1/15

Advanced tailings dam performance monitoring
with seismic noise and stress models
Susanne Ouellet  (  susanne.ouellet2@ucalgary.ca )

University of Calgary https://orcid.org/0000-0001-8240-2916
Jan Dettmer 

Uni Calgary https://orcid.org/0000-0001-8906-8156
Gerrit Olivier 

University of Tasmania
Tjaart de Wit 

Institute of Mine Seismology
Matthew Lato 

BGC Engineering Inc.

Article

Keywords:

Posted Date: June 7th, 2022

DOI: https://doi.org/10.21203/rs.3.rs-1647118/v1

License:   This work is licensed under a Creative Commons Attribution 4.0 International License.  
Read Full License

https://doi.org/10.21203/rs.3.rs-1647118/v1
mailto:susanne.ouellet2@ucalgary.ca
https://orcid.org/0000-0001-8240-2916
https://orcid.org/0000-0001-8906-8156
https://doi.org/10.21203/rs.3.rs-1647118/v1
https://creativecommons.org/licenses/by/4.0/


Page 2/15

Abstract
Tailings dams retain the waste by-products of mining operations and are amongst the world’s largest
engineered structures. Recent tailings dam failures highlight important gaps in current monitoring
methods and a pressing need to advance research on tailings dam monitoring technologies, considering
growth predictions for the mining of metals. At an active tailings dam in northern Canada, we combine
ambient noise interferometry with a quantitative stress model to monitor shear wave velocity (Vs)
changes. Changes in seismic velocities of less than 1% correlate strongly with water level �uctuations at
the adjacent tailings pond. A stress model, calibrated using pond level recordings and Vs pro�les obtained
from cone penetration tests, demonstrates that the seismic velocity changes obtained with ambient noise
interferometry are predominantly changes in Vs. Furthermore, this model constrains Vs changes to a
depth of ~16 m, corresponding to uncompacted tailings below the dam. As Vs is used to assess the
liquefaction potential of soils, this method provides important advances for understanding changes in
dam performance over time.

Introduction
Global demand for minerals is rising, with additional pressure on supply driven by the transition to
renewable energy sources1,2. Alongside declining ore grades, this demand is increasing the volume of
waste material, known as tailings, produced by the mining industry1–3. Tailings dams, designed to retain
the waste by-products of mining, are among some of the largest engineered structures in the world4; there
are an estimated 8,100 tailings facilities worldwide3. Tailings dams are designed and constructed under
similar regulations as conventional water storage dams in many industrialized nations4. However, the
likelihood of tailings dam failures is approximately two orders of magnitude higher, and the risk of future
tailings dam failures is projected to increase5,6. The 2019 Brumadinho, Brazil tailings dam failure caused
over 270 deaths, was an environmental disaster, and increased public scrutiny of tailings dams
worldwide3,7,8. Forensic investigations of the failure classi�ed it as a �ow liquefaction event and
indicated that the extensive monitoring instrumentation installed was inadequate to detect any
signi�cant changes prior to the failure9. This highlights the current challenges faced by geotechnical
engineers to appropriately monitor these structures.

Ambient noise interferometry (ANI) is a geophysical technique that relies on the reconstruction of the
impulse response of a wave�eld by cross correlating the naturally occurring noise signals between a pair
of seismic sensors, where one acts as a virtual source and the other as a receiver10,11. The wave�eld
includes coda waves in the later portion of the seismogram. Coda waves represent scattered waves that
have spent more time propagating within the medium, and are more sensitive to seismic velocity
changes10,12. By monitoring temporal changes in the coda portion of the wave�eld propagating between
the sensors, relative changes in seismic velocities are measured, commonly referred to as dv/v. This
method has been used to monitor volcanoes, landslides, and dams1–5.
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Remote sensing methods, particularly satellite-based interferometric synthetic aperture radar, are
increasingly being used to support tailings dam monitoring6–10. Alternatively, geophysical-based
monitoring methods detect changes in the subsurface that aren’t measurable using remote sensing
methods11–15. Although geophysical-based methods also have limitations, they complement tailings
dam monitoring when combined with remote sensing and downhole instrumentation (e.g. vibrating wire
piezometers, slope inclinometers, etc.).

Shear wave velocities (Vs) are an important parameter for evaluating the liquefaction susceptibility of

tailings materials16,17. Industry standard methods for obtaining Vs for liquefaction assessments include
in-situ measurements with seismic cone penetration testing (sCPT), geophysical methods such as
spectral analysis of surface waves, downhole and crosshole tests, and laboratory measurements using
bender elements or resonant column tests18. These methods are generally used to characterize site
conditions at one point in space and time, as multiple acquisitions are costly and time-consuming.
Furthermore, differences in methods can lead to con�icting results19,20. This makes ANI an attractive
method for geotechnical applications, to improve understanding of how Vs may change over time.

We employ ANI using an array of twenty-�ve geophones at an active mine site in northern Canada over a
two-month period during summer. Site stratigraphy from nearby boreholes with sCPT data is used to
constrain an effective stress model and improve understanding of the depth sensitivity of the ANI
method. Our results demonstrate that seismic ambient noise monitoring coupled with an effective stress
model provides new information about dam performance by resolving small changes in Vs, and inferring
where these changes occur. These advances pave the way for monitoring temporal and spatial changes
of the stability and liquefaction potential of tailings dams, which could profoundly improve how these
structures are monitored in the future.

Results

Seismic velocity changes and environmental site data
The study site is located at an active mine site, and a tailings pond is located ~ 200 m North of the
geophone array (Fig. 1). Pond levels �uctuated throughout the data acquisition period and are controlled
both by environmental and operational factors. We acquired vertical-component waveform data from
twenty-�ve 5Hz geophones in a T-shaped array during active and inactive construction periods, from June
to early August 2020 (Fig. 1). As ANI requires coherent cross-correlation waveforms and the active
construction period resulted in incoherencies, these were removed from the dataset and only inactive
construction period seismic data (three hours recorded per day) were relied on for further processing (Fig
S1).

Standard ANI processing methodologies were applied to obtain seismic velocity changes (dv/v) (see
Methods). The dv/v estimates were compared with other site information, including: tailings pond levels,
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daily rainfall, atmospheric pressures and temperature data. During the monitoring period, three main
trends are observed: (1) a dv/v increase of ~ 0.6% over the �rst month of recording coincides with
decreasing water levels at the pond; (2) a dv/v decrease > 0.5% in the �ve days following the highest daily
rainfall during the monitoring period; and (3) a dv/v recovery to the pre-rainfall levels in the �nal week of
data acquisition (Fig. 2).

Effective stress model
We modelled relative changes in Vs, (dVs/Vs) to validate our dv/v estimates by implementing a known
relationship between Vs and effective vertical stress for granular soils. This relationship can be expressed

as a power law, and is dependent on the polarization and propagation direction of shear waves21–23. For
effective vertical stress, Vs is represented as

Vs = ασ'βv

1
,

where α and β represent material constants, and σ'
v is the effective vertical stress24,25. The material

constant α represents the shear wave velocity at σ'
v equal to 1 kPa, and β is a measure of the stress-level

dependency to shear waves, empirically given24 as

β = 1.01 − 0.18 × lnα

2
.

Here, β incorporates both interparticle contact behavior and fabric changes. It approaches 0 for a
cemented soil, 0.25 for rough, angular particles or spherical particles with contact yield, and 0.75 for
contacts governed by Coulombian forces23. We obtained site-speci�c α and β parameters for the various
stratigraphic units by performing a power-law regression analyses with bootstrap sampling, using Vs and 

σ'
v data obtained from 52 sCPTs completed in 2017 and 2018 (Fig. 3; Table S-1). Power-law regression

analyses, undertaken for the compacted tailings and glaciolacustrine clay unit, are shown in Figs. S-3 and
S-4. Additional details of statistical analyses are described in Methods.

Estimates of daily effective vertical stresses were inferred from daily resampled pond data using Eq. (6).
These estimates, alongside site-speci�c α and β parameters (Table S-1) were input into Eq. (1) to obtain
daily Vs. Relative changes in daily Vs were obtained, treating depths z as an unknown and varying it from
near surface to bedrock depths (~ 39 m), using
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dVs
Vs

=
Vs −

−
Vs

−
Vs

3
,

where 
−
Vsis the mean of all daily Vs estimates obtained with Eq. (1). The L1 norm was computed �tting

the dVs/Vs prediction to the dv/v results. A grid search over z produced a minimum mis�t for z equal to
15.7 m (Fig S-5). Bootstrap analyses followed by Monte Carlo sampling were used to estimate
uncertainties of the depth z obtained, with 95% con�dence intervals from 14.1 m to 17.4 m (see Methods
for details). Figure 3 shows the predicted dVs/Vs results from the effective-stress model for the optimal z
and dv/v results from ANI. The close agreement illustrates that the model successfully explains the ANI
results to be predominantly changes in Vs, and that changes are occurring in the topmost 16 m of the
structure. This primary sensitivity to shear waves is in agreement with the theoretical results for a
Poisson medium26. Importantly, dominant sensitivity to Vs permits ANI results to be interpreted in terms
of dam performance.

Discussion
Our dv/v estimates suggest that effective stress changes, attributed to changes in pond levels, have the
strongest in�uence on dv/v, as no meaningful correlations are observed between dv/v and borehole
temperature or barometric pressure data. This is consistent with other results27,28. Using a two-
dimensional thermoelastic strain model, Tsai27 demonstrated that hydrologic variations likely dominate
dv/v estimates over thermoelastic effects. Furthermore, Clements and Denolle28 modelled seasonal
thermoelastic strains for dv/v monitoring and found that these strains had a much lower effect on the
wavespeed perturbation than hydrological effects. Fokker et al.29 present a physics-based model to show
that changes in shear wave velocities are primarily caused by �uctuations in effective stress through
changes in the shear modulus. Their approach relies on modelling changes in seismic surface wave
velocity using a spectral element method30. In comparison, our model is based on empirical equations
(Eq. (7)) from fundamental principles of soil mechanics, effective for near surface applications in
granular soils. The application of empirical relationships is attractive for tailings dams, since site-speci�c
sCPT data are typically available.

Our effective stress model is able to replicate the three main trends visible in the dv/v curve (Fig. 2);
however, some discrepancies remain. Higher variability in individual dv/v traces is visible from July 15 to
17, 2020. We attribute this variability to nearby construction at the south of the geophone array, resulting
in lower waveform coherencies over this period. Furthermore, due to a lack of groundwater level
measurements near the geophone array, groundwater levels were inferred using data from the nearby
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tailings pond. This may also contribute to discrepancies between dVs/Vs predictions and the dv/v curve.
Material heterogeneities (e.g. dam �ll and tailings) along the seismic wave propagation paths are likely to
further increase this discrepancy (Fig. 4).

We attribute the lack of meaningful correlations between dv/v estimates and temperature to the shorter
(~ 41 day) data acquisition period. Over this period, the daily mean surface temperature �uctuated
between 16˚C and 26˚C, with a mean temperature of 21˚C. Had our data acquisition continued during
winter with more extreme temperature changes, these effects may have been visible in dv/v, as observed
by others31. We chose to neglect the effects of barometric pressure within our effective stress model,
considering the non-linearity of barometric pressures at depth (e.g. damping and time delay effects),
dependent on soil properties and groundwater levels32. We also neglected the effects of suction in the
unsaturated zone; assuming the soil behaves either fully saturated below the inferred ground water level
or fully unsaturated, above the inferred ground water level. Further research and model development may
improve understanding of the sensitivity of dv/v measurements to suction in the partially saturated zone.

The depth sensitivity of the dv/v estimates is dependent on the frequency band applied to the cross-
correlations (5 to 15 Hz in this work). In an isotropic and homogeneous medium, most of the Rayleigh-
wave energy at a frequency f is contained from surface to a depth z at approximately one third of a
wavelength λ33. The average Vs in the dam �ll (compacted tailings) and underlying tailings can be
approximated as 300 m/s and 200 m/s, respectively, based on nearby sCPTs. As such, we estimate an
average Vs of ~ 220 m/s over the topmost 39 m (i.e., from surface to bedrock) near our geophone array.
Assuming a homogeneous medium, wavelengths for this Vs are between 15 m and 44 m, which suggest
depth sensitivity between 5 m and 15 m. Our model estimates a depth sensitivity over the top ~ 16 m,
accounting for the inhomogeneity of the structure, with a higher-velocity dam �ll layer overlying lower-
velocity tailings.

The α and β parameters obtained for the compacted tailings, coarse tailings and clay units were observed
to have signi�cantly higher uncertainties than for the �ne tailings unit (Fig S-5). This is attributed to an
overall lower number of samples and the heterogeneity of these layers. Heterogeneity, such as increased
cobbles or gravel, as well as higher resistance, due to compaction of the compacted tailings, prevents
advancement of the sCPT. This lowers the reliability of the sCPT measurements obtained through these
layers.

Active mine sites are prime locations to study emerging monitoring methods such as ANI, as
complementary site information (e.g. sCPTs, historical boreholes, weather station data), can be used to
compare and validate results. At this site, data from 52 downhole sCPT measurements was used to
parametrize an effective stress model to compare with dv/v estimates. As sCPTs are routinely carried out
at many mine sites to assess the liquefaction potential of tailings, incorporation of sCPT data for model
constraint allows for site-speci�c adaptation by mining practitioners. At sites without access to similar
datasets, alternative geophysical techniques (e.g. multichannel analysis of surface waves) could be used
to estimate site-speci�c constraints (α, β) to parametrize an effective stress model. Based on the general
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agreement between the dv/v measurements and the dVs/Vs model, our results demonstrate how ANI can
be applied at a tailings dam site to provide highly sensitive (< 1%) measurements of in-situ changes of Vs

alongside an approximation of depth sensitivity, without requiring advanced geomechanical models. By
comparing the changes in Vs obtained from the model to the dv/v estimates, deviations between the
modelled dVs/Vs and the dv/v could be used to indicate potential anomalies (e.g. internal erosion) that
aren’t attributable to changes in groundwater levels. This approach could be used to alert to potential
areas of concern, indicating where additional inspection and monitoring may be warranted. Furthermore,
as Vs measurements are used in the evaluation of the liquefaction resistance of a soil16, combining
modelled dVs/Vs with ANI could inform on changes in liquefaction potential of the in-situ tailings material
and underlying foundation. For instance, as liquefaction involves a phase-change in the medium from a
solid to liquid state, it follows that the shear wave velocity will also decrease dramatically34. Further
research of liquefaction-type failures is needed to improve understanding of whether adequate warning
time could be provided by monitoring changes in Vs

35.

The data processing steps described do not require high computing power, and could be used to
e�ciently process incoming data for ongoing monitoring purposes. For example, in an operational
setting, geophone data could be processed using a three-day rolling average to reduce errors and limit
uncertainties14. Combining information on changes in Vs with other monitored geotechnical parameters
(e.g. pore pressures, deformation, seepage) could be used to advance overall tailings dam monitoring
performance.

This methodology can be expanded towards monitoring greater extents (e.g. many kilometers) along
linear infrastructure by combining ANI with distributed acoustic sensing (DAS) �ber optic technologies. At
this mine site, existing telecoms optical �ber has been installed in the dam crest and research on the DAS
dataset is underway using the methodology presented. The results of this research may have signi�cant
implications beyond monitoring tailings dams for other near-surface applications, such as permafrost
engineering and landslide investigations. Even though some open questions remain, the advances
presented in this manuscript show the potential to use ANI as a quantitative real-time tool and increase
our understanding of the temporal evolution of the internal state of tailings dams.

Methods

Seismic recordings and cross-correlations
Nineteen geophones were installed in a northwest-southeast orientation along the tailings dam crest and
six were installed in a northeast to southwest orientation extending into the tailings beach. Geophones
were buried �ve to ten centimeters below ground to reduce the near surface effects of atmospheric
pressure and temperature �uctuations. Geophones recorded for a 12-hour period per day. Nine hours of
data were collected during active construction at the site, and three hours of data were collected when
construction was not active.
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The ambient noise recorded during active construction was highly directive and sources moved in time
and space, resulting in incoherent cross-correlation waveforms. Therefore, cross-correlations are only
considered from recording times without construction, three hours per day (00:00 to 03:00 UTC; Fig S-3).
Sesimic data pre-processing included detrending, tapering, �ltering and normalization36. Further details
are in the Supplementary information. Each station pair combination (representing a virtual source and
receiver) was cross-correlated using 20-second time windows. These windows were stacked over the
three-hour inactive construction period to obtain daily cross-correlation waveforms. A reference cross-
correlation waveform, required for computing dv/v, is the mean of all daily cross-correlations acquired
over the data acquisition period (35 to 41 days depending on the battery life of the geophone). The dv/v
measurement is plotted as a daily measurement at 01:30 UTC, to compare with the environmental site
data recordings. The stretching methodology was applied to causal and acausal coda windows (+/- 0.5
seconds to +/- 3.5 seconds) to obtain dv/v measurements, and causal and acausal windows were
averaged to improve signal to noise ratio1, 37–39.

Effective stess model
Shear wave velocities (Vs) were obtained approximately every meter along sCPT pro�le by laterally
striking a beam held in place by a normal load, using a sledgehammer. Average Vs are ~ 300 m/s in the
compacted tailings material and ~ 200 m/s in the tailings and underlying material, up until refusal. A
generalized stratigraphy model based on historical borehole data is shown in Fig. 4a.

The velocity of shear waves traveling within a soil depends on the effective con�ning stress, saturation,
and mass density23. For a homogeneous and isotropic medium, Vs can be expressed as a function of the
small strain shear modulus (Gmax) and the bulk density of the soil (ρ),

Vs =
Gmax

ρ

4

The principle of effective stress40 de�nes the stress experienced by the soil skeleton that controls
deformation. In a one-dimensional model, the effective vertical con�ning stress is equal to the overburden
stress minus the pore pressure

σ'
v = σv − u

5
,

where σv is the total vertical stress and the pore pressure u is obtained from

√
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u = γw z − dw ,

6

where γw is the unit weight of water (9.81 kN/m3) and dw is the depth to the inferred groundwater level,
relative to the dam crest elevation. In Eq. (5), σvcan be approximated as the sum of the unit weights of

each layer, multiplied by the thickness of that layer. Using the resampled daily pond data, we estimate σ'
v

at depths varying from surface to the approximate bedrock depth at 39 m, for each day. Equations to
obtain the total vertical stress σv for z in each layer, relative to the dam crest, are

σv(z) =

γdfz, z < dw

γdf dw + γdf , sat h1 − dw , dw < z < h1

γdf dw + γdf , sat h1 − dw + γt , sat z − h1 , h1 < z < h2

γdf dw + γdf , sat h1 − dw + γt , sat h2 + γGLU ,sat z − h2 , z > h2

7
,

where dw is the depth to the inferred groundwater level, h1 is the distance from surface to the dam �ll and
tailings boundary, and h2 is the distance from surface to the tailings and clay boundary (Fig. 3). Unit
weights are shown as γdf and γdf,sat, representing the moist and saturated dam �ll, γt,sat, representing the
underlying tailings, and γGLU,sat representing the underlying glaciolacustrine clay unit.

Bootstrap analyses were performed on α and β parameters obtained from the power regression analyses.
A total of 150,000 bootstrap simulations were performed to obtain probability distributions for α, β
parameters of each unit (Fig. 4). Monte Carlo simulations were then performed (50,000 iterations) to
randomly select from the empirical cumulative distribution function of the α, β parameters obtained from
bootstrap sampling. A depth z, representing the minimum L1 mis�t between dv/v estimates and the
dVs/Vs model, was obtained for each simulation. The resulting probability distribution of depth z is
shown in Fig S-6.
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Figure 1
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Site overview. (a) Geophone array overlain on lidar data (1 m contours, collected in November 2020).
Location of subset of sCPTs used in regression analyses. Additional sCPTs used in analyses are not
shown as they are outside of the �gure extents. (b) Twenty-�ve geophone array (20 on dam crest, �ve on
tailings beach), showing cross-section A-A’. (c) Cross-section A-A’ of the tailings dam. The dashed black
line shows approximation of dam �ll and tailings extent for an upstream tailings facility, and does not
represent actual delineated extents of �ll and tailings.

Figure 2

Seismic velocity changes (dv/v) plotted with pond levels, rainfall and barometric pressure. The upper
graph shows average dv/v over the geophone array as a thick black line, with minimum and maximum
extents of individual virtual sources averaged over all receiver combinations shaded in light grey. The
nearby pond elevation is plotted on the same graph with an inverted y-axis, to illustrate the inverse
correlation of the pond levels with dv/v. The lower graph shows the daily rainfall, barometric pressure and
pond elevations. Three main trends are observed: (1) an increase in dv/v of up to ~0.6% over the �rst
month of data acquisition coincides with a decrease in water levels at the nearby pond; (2) a decrease in
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dv/v of over ~0.5% in the �ve-days following the highest daily rainfall observed over the monitoring
period; and (3) a recovery in dv/v to the pre-rainfall levels in the �nal week of data acquisition.

Figure 3

Main result. (a) Site stratigraphy obtained from historical borehole information. (b) Estimation of site
speci�c and  from power-law regression using Vs estimates from sCPT surveys and effective vertical
stress for tailings material. Bootstrap analyses, shown in shaded grey, were used to obtain 95%
con�dence intervals of the

 and parameters. Regression results for compacted/coarse tailings and clay units are presented in
Supplementary Fig S3. (c) Modelled dVs/Vs based on

 and obtained from power-law regression for an optimized depth z in blue. Shaded blue area represents
the maximum and minimum extents of 50,000 Monte Carlo simulations, and the blue line is the mean of
all simulations. Average dv/v estimates over geophone array are shown as a black line, with gray shading
representing maximum and minimum extents of individual virtual sources averaged over all receiver
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combinations. The average correlation coe�cient, plotted as a marker, shown between the reference
correlation waveform and the stretched waveform.

Figure 4

Probability density functions of α and β parameters showing 95% con�dence intervals (black vertical
lines) obtained from bootstrap sampling (150,000 samples). 
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