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Abstract 
 
   The mechanisms governing the shear behaviour of sand and sand-geomembrane 
interfaces is studied by carrying out large scale symmetric loading direct shear tests 
on three sands of different sizes with similar morphological characteristics and a 
smooth high density polyethylene geomembrane. To focus on the effect of particle 
size on the shear behaviour, the morphological properties of sand particles, measured 
from microscopic images, were kept same. Surface topographical profiling of the 
geomembranes before and after interface shear tests was carried out to understand the 
extent of indentation due to shearing along the interface. The representative samples 
of smooth geomembranes after tests with three sands of different sizes at one 
particular normal stress were selected for damage analysis/surface roughness 
measurements through 3D optical profilometer. 3D contours of surface roughness of 
the geomembrane before and after the tests are presented and compared. Interface 
shear strength was observed to hugely depend upon the effective contacts formed on 
the surface of the geomembrane, which are a function of the number of particles in 
contact and the depth of the grooves formed by these particles on the surface of the 
geomembrane. 
 
1.  INTRODUCTION 
 
   The behaviour of geosynthetic reinforced soil structures can be of two types - 
dilative and non-dilative. The mechanism involved in these two types of behaviour is 
different because the dilatancy at the interface depends upon the relative size of soil 
particles compared to the surface asperities of the geosynthetic material. The shearing 
resistance offered in case of dilative interface systems (sand-textured geosynthetics) is 
mainly due to interlocking between the soil particles and surface asperities of the 
geosynthetic material. Therefore, the surface roughness due to the asperities of the 
geosynthetic significantly influences the magnitude of interface shear strength in this 
interface system (Paikowsky et al, 1995; Lings and Dietz 2005). Whereas in the case 
of non-dilative interface system, particularly sand-smooth geomembrane interface, 
fundamental mechanism that mainly contributes to the shearing resistance is plowing 
of softer material (geomembrane) by the harder material (sand particles). Particle size 
(Uesugi and Kishida, 1986; Williams and Houlihan 1987) and morphology of the 
particulate material as well as surface hardness (O'Rourke et al. 1990) of the smooth 
continuum material plays important role in plowing mechanism and associated 
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shearing resistance. Thus the mechanism involved in the non-dilative interface 
systems cannot be explained by traditional soil mechanics principles unlike the case 
of dilative interface systems. To understand the plowing mechanism, more accurate 
quantification of the size and morphological properties of particulate materials as well 
as shear induced surface changes of the geomembrane becomes necessary.  Recent 
developments in digital image techniques enabled easy and more accurate 
quantification of the morphological properties of the sand particles compared to 
conventional techniques (Vangla and Latha, 2015). Similarly, the advancement in 
non-contact optical techniques provided more accurate and easier way of 
quantification of the surface changes on the geomembrane.  The present study is 
aimed at understanding the interface shear behaviour of sand-geomembrane 
interfaces, with a specific focus towards the effect of particle size by adopting latest 
techniques for the material characterization and measurements.    
   
2.  MATERIALS  
 
2.1 Sand 
 
   Three different types of sands were used in this study, namely, coarse sand (CS: 
particle size 4.75 mm-2 mm), medium sand (MS: particle size 2 mm-0.425 mm) and 
fine sand (FS: particle size 0.425 mm-0.075 mm). All these sands are   classified as 
poorly graded sands (SP) as per Unified Soil Classification System. These sands were 
obtained by scalping specific size fractions from river sand of same origin. Table 1 
presents the properties of sands. Photographs showing the physical appearance of 
sands and Scanning Electron Microscopic (SEM) images showing the variation in 
grain sizes of the three sands are shown in Fig. 1.     

 
Table 1. Properties of sands used in this study 

Property Coarse Sand 
(CS) 

Medium 
Sand  (MS) 

Fine Sand 
(FS) Grain size parameters 

D10 (mm) 2.18 0.5 0.16 
D30 (mm) 2.57 0.68 0.19 
D50 (mm) 3 0.87 0.22 

Coefficient of uniformity, Cu 1.49 1.96 1.51 
Coefficient of curvature, Cc 0.93 0.97 0.93 
Maximum unit weight, γmax (kN/m3) 15.88 16.09 16.05 
Minimum unit weight, γmin (kN/m3) 13.96 13.59 13.1 
Maximum void ratio, emax 0.82 0.87 0.95 

Maximum void ratio, emin 0.6 0.58 0.6 
 

Literature suggests that the morphology of sands, which represents the geometry and 
shape of sand grains plays important role on the shear behaviour (Santamarina and 
Cho, 2004; Gӧktepe and Sezer, 2010). To eliminate the effects of sand morphology 
while studying the effect of particle size, sands of similar morphology with varying 
particle size are selected for this study. The morphological characteristics of sand 
grains were quantified through image analysis on 50 particles. The image analysis on 
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the particles involves conversion of SEM images into binary images and extracting 
the pixels information to obtain the geometrical information of the sand particles to 
compute the morphology as per the formulae given in Table 2. A special algorithm is 
written in MATLAB to carry out the image analysis. It is observed from Table 2 that 
CS, MS, and FS have similar roundness, sphericity and regularity, indicating that 
these sands have similar morphology.  

 

 
 

FIG. 1. Photographs and Scanning Electron Microscopic (SEM) images of sands 
 

Table 2. Morphological characteristics of sands 
Morphological 

Descriptor 
Formula Reference CS MS FS 

Roundness (R) 
 

૛ࡼ࡭ߨ4  Janoo (1998) 0.74 0.73 0.74 

Sphericity (S) 2√࡭ߨ	ࡼ  Sympatec (2008) 0.86 0.85 0.86 

Regularity (ρ) 
ሺࡾ ൅ ሻ2ࡿ  Cho et al. (2006) 0.80 0.80 0.80 

Pictorial 
representation of 

notation and 
description 

P is the perimeter of any horizontal projected section of the particle 
at rest 
A is the area of the profile of the particle projection 

 
2.2 Geomembrane  

   A smooth High Density Polyethylene (HDPE) geomembrane, which is 
commercially available and more often used in engineering applications due to its 
more favorable properties like high tensile strength at low strains is used in this study. 
The properties of this geomembrane given by manufacturer are: thickness - 1.5 mm, 
mass per unit area - 1326 g /m2, tensile strength - 45 kN/m, and failure strain - 700 %.   
 

P 
A
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4.  RESULTS AND DISCUSSIONS  
 
4.1 Direct shear tests  
 
Initially a series of symmetric loading direct shear tests were performed on all three 
sands at relative density of 70 % under three normal stresses to determine the internal 
friction angle. A representative shear stress-shear displacement response of all three 
sands under a normal stress of 53 kPa is shown in Fig 3a.  Fig 3b, 3c and 3d present 
peak and post peak normal stress vs. shear stress plots for CS, MS and FS 
respectively. Irrespective of the large variations in the particle sizes of all three sands, 
the shear stress-shear displacement response have shown almost same peak shear 
stress.  
   The peak and post peak friction angles obtained for these sands are presented in 
Table 3. From this table it is evident that CS, MS and FS have almost same friction 
angle and have different post peak friction angles. Literature suggests that 
morphology of the sands have major role on peak friction angle (Santamarina and 
Cho, 2001; Holtz and Kovacs, 1981) and also suggested that particle size does not 
have any effect on the peak friction angle if the shear tests are carried out at same 
void ratio (Holtz and Kovacs, 1981). Thus, the similar peak friction angles obtained 
for sands used in this study can be attributed to the fact that these sands have similar 
morphological characteristics and all the tests were performed at almost same void 
ratio as shown in Table 3.  
 

 
FIG. 3. A representative shear stress-shear displacement and the failure 

envelopes of the CS, MS and FS 

a b 

c d 
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Table 3. Peak and post peak friction angles for CS, MS and FS 
 

Type of sand 
Internal peak 
friction angle  

Internal post peak 
friction angle  Void ratio ‘e’ at RD 70% 

CS 40.8 38.9 0.67 
MS 40.7 37.2 0.67 
FS 40.4 35.9 0.70 

 
The drop of the peak shear stress is increasing with decrease in particle size, which is 
clearly visible in the comparison plots (Fig 3b, 3c and 3d) of peak and post peak shear 
stress envelopes.  Further, the influence of the particle size on the post peak shear 
response and post peak friction angle can be seen in Fig 3a and Table 3 respectively. 
The drop of the peak friction angle or peak shear stress with shear displacements is 
more in fine sand with respect to medium and coarse sands. The reason for this 
behaviour is that the interlocks between sand particles get slowly released while the 
sand is sheared after the peak shear stress is reached, which reflects as the drop in 
peak shear stress. The post peak release of interlocks between the sand particles is 
comparatively slower for bigger size particles and hence the drop is minimal.  
 
4.2 Interface shear tests 
 
    The effect of particle size on the interface shear behaviour was investigated by 
conducting a series of shear tests on sand-geomembrane interfaces. A representative 
shear stress-shear displacement plot at a normal tress of 53 kPa is shown in Fig 4a. 
Figs 4b, 4c and 4d present of peak and post peak shear stress envelopes for CS-GM, 
MS-GM and FS-GM interfaces respectively. Table 4 presents the peak and post peak 
friction angles for all three interfaces. Results from interface shear tests show that CS 
with mean particle size (D50) of 3 mm has yielded lesser interface peak friction angle 
than MS and FS which have obtained almost same interface peak friction angles. The 
reason for higher interfacial strength in case of medium and fine sands compared to 
coarse sand can be attributed to the higher number of effective contacts, which will be 
explained in later sections. Also, there is a considerable drop of peak shear stress in 
case of fine sand, unlike coarse and medium sands where the peak shear stress is 
sustained for large deformations.  The comparative plots of peak and post peak shear 
stress envelopes presented in Figs. 4b, 4c and 4d show more clearly that the drop of 
peak shear stress is higher in case of FS and it decreased with the increase in particle 
size, from MS to CS. This result is similar to the behaviour observed in sand alone 
tests.  
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Surface profile analysis after shearing showed that the number of grooves formed on 
CS-GM interface are very less compared to the grooves formed on MS-GM and FS-
GM interfaces. Table 5 shows that the average roughness (Ra) of the sheared surface 
is in the decreasing order for MS-GM, CS-GM and FS-GM interfaces. Also, when the 
depth of grooves is compared in terms of Rt, grooves were deeper for MS-GM 
interface. Fig.5 also shows that the grooves formed by coarse sand are wider but less 
deep compared to medium sand because of their bigger particle size. In case of fine 
sand, the grooves were more but the depth and width of these grooves is relatively 
small, because of which the sand could easily slide along the grooves, which is the 
reason for post-peak shear stress drop in this case. These observations lead to the fact 
that medium sand used in this study was able to make more effective contacts with 
the geomembrane compared to other two sands, which was measured through more 
number of deeper grooves formed. 
 
Table 5. Amplitude parameters of post shear profiles of geomembrane sheared 
by CS, MS and FS  
 

Interface 
Amplitude Parameters 

Ra (µm) Rz (µm) Rt (µm) 
CS-GM 0.636 6.375 15.000 
MS-GM 0.782 6.471 15.176 
FS-GM 0.395 4.176 9.325 

 
Results from the interface shear tests reveal that the effect of particle size on the 
interface shear behaviour is more evident on the post peak behaviour, which can be 
correlated to the surface changes on the geomembrane. It is the effective contacts, 
which can cause deeper grooves that govern the interface shear behaviour than the 
particle size alone.  
 
6.  CONCLUSIONS  
  
A systematic series of symmetric loading direct shear tests were performed on three 
sands having different mean sizes and similar morphological properties. It was 
observed that sands having different mean particle size (D50) exhibit similar peak 
friction angles if the morphology and initial void ratio remain same. However the 
effect of particle size can be seen in post peak behaviour, the post peak friction angle 
increasing in the order of increase in particle size. Further, interface direct shear tests 
were performed on these sands interfacing with a smooth geomembrane. Test results 
showed that the shear behaviour of sand-geomembrane interfaces is mainly governed 
more by the effective contacts than the particle size. Surface change measurements 
showed that the medium sand could make more number of effective contacts with 
deeper grooves, resulting in highest interface friction. The number of grooves were 
less in case of coarse sand and the depth of grooves was less in case of fine sand, 
resulting in lesser interface friction for these two sands compared to medium sand, 
supporting the results of interface shear tests 
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