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ABSTRACT: Hyperspectral infrared (IR) images contain a large
amount of highly spatially resolved information about the chemical
composition of a sample. However, the analysis of hyperspectral IR
imaging data for complex heterogeneous systems can be
challenging because of the spectroscopic and spatial complexity
of the data. We implement a deep generative modeling approach
using a β-variational autoencoder to learn disentangled representa-
tions of the generative factors of variance in a data set of cross-
linked polyethylene (PEX-a) pipe. We identify three distinct
physicochemical factors of aging and degradation learned by the
model and apply the trained model to high-resolution hyperspectral
IR images of cross-sectional slices of unused virgin, used in-service, and cracked PEX-a pipe. By mapping the learned representations
of aging and degradation to the IR images, we extract detailed information on the physicochemical changes that occur during aging,
degradation, and cracking in PEX-a pipe. This study shows how representation learning by deep generative modeling can
significantly enhance the analysis of high-resolution IR images of complex heterogeneous samples.
KEYWORDS: hyperspectral infrared imaging, deep learning, representation learning, β-variational autoencoders,
cross-linked polyethylene pipe

■ INTRODUCTION
Cross-linked polyethylene (PEX-a) pipe is increasingly used
for domestic and industrial potable water transport and radiant
heating and cooling applications. The cross-linking of poly-
ethylene (PE) imparts favorable physical properties to the pipe
such as high tensile strength. During in-service use, PEX-a pipe
can be exposed to chlorine, elevated temperature, and UV
light, which can induce thermo- and photo-oxidative
degradation via free-radical pathways and PE chain scission.
To enhance the long-term pipe durability, manufacturers
typically include stabilizing additives such as primary
antioxidants, secondary antioxidants, ultraviolet (UV) absorb-
ers, and hindered amine light stabilizers. To evaluate their
mechanical and oxidative resistance and forecast potential
service lifetimes, PEX-a pipes are commonly subjected to
hydrostatic pressure1 and chlorinated water resistance2 tests.
As manufacturers of PEX-a pipe seek to expand the use of PEX
pipe to newer and more vigorous operating conditions, they
require tools for analyzing the mechanistic effects of the
additional stresses on defects that can form and grow in the
pipes, e.g., crack propagation.
Hyperspectral infrared (IR) imaging is a powerful tool for

the study of aging, degradation, and cracking in PEX-a pipe. In
a hyperspectral IR image, each pixel corresponds to an IR
absorption spectrum. The IR absorption spectrum of PEX-a

pipe contains extensive physicochemical information on the PE
matrix, stabilizing additives, and aging and degradation
products;3−12 the high-spatial resolution of IR imaging enables
the detailed examination of localized chemical changes that can
occur, e.g., at the inner surface of the pipe wall and in the
immediate vicinity of cracks. This highly spatially resolved
physicochemical information has the potential to yield valuable
insights into PEX-a pipe aging and failure.

However, the analysis of IR imaging data for complex
heterogeneous systems, such as PEX-a pipe, can be limited by
their inherent complexity. The information contained in
hyperspectral IR images can be convoluted both spectroscopi-
cally and spatially. Spectroscopic complexity occurs because
many covalent chemical bonds absorb IR light at multiple
frequencies, and the absorptions often overlap to a significant
degree for different chemical species. Spatial complexity arises
from different chemical reactions that can occur simulta-
neously but to different extents at different locations within the
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pipe, such as in the vicinity of the inner/outer wall surfaces or
cracks. To extract as much information as possible from such
data sets, it is necessary to implement advanced data analysis
techniques.
Machine learning and deep learning approaches are

increasingly being applied to spectroscopy data and material
characterization.13−19 We have previously reported on a deep
learning approach that we applied to the study of complex IR
spectroscopy data, in which we trained an artificial neural
network β-variational autoencoder (β-VAE) on a data set of
25,000 IR spectra of PEX-a pipes.5 β-VAEs are deep generative
models capable of learning disentangled (independent and
interpretable) representations of the generative factors
responsible for variance in data.5,20,21 For PEX-a pipe IR
spectra, the physicochemical processes that can occur during
pipe aging, degradation, and cracking are the underlying
generative factors responsible for the variance in the spectra.5

The β-VAE model learns disentangled representations of the
physicochemical factors, in which each latent variable is
sensitive to changes in a single physicochemical factor and
insensitive to changes in others.
In this work, we apply a trained β-VAE model to a series of

hyperspectral IR images of radial cross-sections of PEX-a pipe.
The training of the β-VAE model was extended to a diverse
data set of ∼30,000 PEX-a pipe IR spectra from ∼400 samples,
including measurements on radial cross-sections of unused
virgin pipe and used in-service pipe, both with and without
cracking. We use the generative capacity of the trained β-VAE
decoder neural network to demonstrate the physicochemical
meaning of the learned representations. We then use the
trained β-VAE encoder neural network to map the learned
physicochemical factors to each pixel (spectrum) of the IR
images. We show that the β-VAE model identifies distinct
factors of aging and degradation and provides important
information on the nature of crack formation and propagation
in PEX-a pipes. Furthermore, the results illustrate the power

and potential of deep learning architectures in the analysis of
complex hyperspectral data and should have important
applications in other fields such as IR biomedical imaging.

■ MATERIALS AND METHODS
Sample Preparation. IR microscopy or IR imaging measure-

ments were performed on virgin, aged, and in-service (both cracked
and not cracked) PEX-a pipe cross-sections prepared by slicing the
pipe samples perpendicular to the extrusion direction using either an
American Optical model 820 rotary microtome or Epredia HM 355S
microtome (slice thickness ∼200 μm). Aged pipe samples were
produced in-house using a custom recirculating water stress station22

with distilled water at 80 psi and at temperatures between 70 and 90
°C. The stress station water was partially (∼35%) replaced daily and
completely replaced weekly. Cross-sectional slices were collected from
small pipe segments (∼3 cm length) at different time points during
the aging process for measurement with IR microscopy.
Infrared Microscopy and Imaging Measurements. Trans-

mission IR microscopy spectra were measured on a Thermo/Nicolet
Continuum IR microscope equipped with a mercury cadmium
telluride (MCT) detector at a spectral resolution of 4 cm−1. Spectra
were typically collected in 10−100 μm increments across the wall
thickness of each pipe cross-section to obtain a radial profile. IR
imaging measurements were performed at the Canadian Light Source
(CLS) on an Agilent Cary 670 spectrometer equipped with a 128 ×
128 pixel focal plane array detector at 25× magnification, 3.3 μm pixel
size, and 4 cm−1 spectral resolution.
Spectra Preprocessing. Spectra were baseline corrected and

normalized by the 2019 cm−1 band in Quasar23 before further
analysis. The 2019 cm−1 band arises from amorphous and crystalline
regions of PE and is used as an internal standard to correct for
variations in sample thickness.3−5 The frequency regions selected for
the deep learning analysis were 1800−1540 and 1400−898 cm−1.
These frequencies correspond to the fingerprint region of the IR
spectrum, excluding the CH2 bending region of PE, which is saturated
for our sample thicknesses due to its strong absorbance.

β-VAE Model Architecture. Autoencoders are neural networks
that are trained to copy their input to their output, typically in a
restricted fashion via a dimensionally reduced encoded layer.24 The
information bottleneck imposed by the restriction forces the

Figure 1. Schematic of the β-VAE model neural network architecture. The input and output layers are the original experimental and reconstructed
IR spectrum, respectively. The encoder consists of two fully connected 128-unit layers with ReLu activations that encodes the input as a probability
distribution parametrized by a 16-unit mean μ and standard deviation σ layer. The 16-unit sampling layer z = μ + σ·ε serves as the input to the
decoder. The decoder consists of two fully connected 128-unit layers with ReLu activations and a linearly activated output layer.
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autoencoder to prioritize the factors used to reconstruct the input,
which can in turn force the model to learn useful properties of the
data.17 In this work, we implement a β-VAE to learn the generative
factors of variance in our spectroscopic data set. The model
architecture is illustrated in Figure 1. The β-VAE model can be
viewed as consisting of two parts, an encoder neural network and
decoder neural network.20,21,24

The encoder network encodes the input as random variables with a
Gaussian probability distribution characterized by a mean μ and a
standard deviation σ.20,21 The decoder network sampled latent values,
z, are obtained from this probability distribution via z = μ + σ·ε,
where ε is a noise term that is generated by a random Gaussian
distribution.20,21 This reparameterization is necessary because the
backpropagation of error required by neural network optimization
algorithms cannot proceed through a random node.20,21,24,25 The
decoder then reconstructs the input from the sampled latent value z.

The β-VAE loss function minimized by the neural network
optimizer is the sum of two components: the mean squared error
(MSE) of the reconstruction compared to the input and a scaled

Kullback−Leibler (KL) divergence term, where the KL divergence
measures the difference between two probability distributions:20,21,25

_ = + ·VAE MSE KLloss loss divergence (1)

The MSEloss component encourages the accurate reconstruction of
the input spectrum. The KLdivergence component acts as a regularizer
on the encoded layer, encouraging the probability distribution of the
latent variables (i.e., μ and σ) to resemble a random Gaussian
distribution (defined by ε in the sampling operation). In β-VAEs, the
KLdivergence component is scaled by a hyperparameter coefficient β, as
in eq 1.20,21 Typically, β > 1, and it serves to increase the relative
weight of the KLdivergence term in the loss function.20,21 The result is a
balance, tuned by β, between the MSEloss and KLdivergence components.
An informative learned latent dimension must contribute sufficiently
to a reduction in the MSEloss of the reconstruction such that it
overcomes the corresponding (and inevitable) KLdivergence cost. We
note that, for a dimension to be informative, its μ and σ values must
differ from the normal distribution and therefore incur a KLdivergence

Figure 2. Collage of optical microscopy images and IR absorbance intensity maps of virgin, used in-service, and cracked PEX-a pipe cross-sections.
The inner surface of the pipe wall is on the left of each image. The integration frequency windows used to generate the absorbance intensity maps
for each row are shown as highlighted regions in the example IR spectrum. The integrated intensity windows for the four intensity maps are (a−c)
1800−1680, (d−f) 1400−1320, (g−i) 1200−1120, and (j−l) 915−900 cm−1. For ease of visualization, the absorbance bands in the 1400−1200
cm−1 region are shown at 30% of their original intensity. The saturated bending CH2 modes are omitted from the spectrum in the 1520−1400 cm−1

region. The scale bars in the optical microscopy images correspond to 200 μm.
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cost. For this reason, β-VAEs tend to be dimensionally efficient and
not use more available latent dimensions than necessary.20,21

β-VAE Model Training and Hyperparameters. The β-VAE
model was implemented in Python with TensorFlow26 and Keras.27

The input layer was 320-units, corresponding to an IR spectrum
consisting of 320 data points. The encoder consisted of two fully
connected 128-unit layers with ReLu activations. The latent
dimension consisted of 16-units (16-unit mean and 16-unit standard
deviation layer). The decoder consisted of two fully connected 128-
unit layers with ReLu activations and a 320-unit output layer,
corresponding to the reconstructed IR spectrum, with linear
activations. The model was trained via k-fold cross-validation (k =
5) on a data set of ∼30,000 IR spectra from ∼400 samples of virgin,
in-service, cracked, and aged PEX-a pipe using an Adam optimizer28

with a learning rate of 10−4 and β = 10. The value of the crucial
hyperparameter β was explored via a grid search and assessed by
spectrum reconstruction and visual inspection of the latent space
quality (see the Supporting Information for examples of experimental
spectra and their corresponding reconstructions). We further assessed
our choice of β by calculating a normalized value of β,

= = =· _
_

× 0.5norm
latent size

input size
10 16

320
, which is consistent with that

expected to give a disentangled latent space for our data and latent
dimension size.20

■ RESULTS AND DISCUSSION
In Figure 2, we show optical microscopy images and
hyperspectral IR imaging data for cross-sections of virgin, in-
service, and cracked PEX-a pipe. IR spectroscopic studies of
polyolefins often track the response of single IR peak
intensities to a stressor (such as elevated temperature or UV
exposure) as functions of time or pipe wall depth to
characterize the chemical changes induced in the system.29−35

In Figure 2, we show integrated intensity maps for four
commonly characterized PE IR absorbance regions: 1800−
1680, 1400−1320, 1200−1120, and 915−900 cm−1. The
dominant (but not necessarily exclusive) functional groups
responsible for the IR absorbance in these regions are
carbonyls, amorphous PE, ester group C−O linkages, and

Figure 3. Decoder generated IR spectra of PEX-a pipe for latent dimension traversals of the (a) most informative latent dimension L1, the (b)
second most informative latent dimension L2, and the (c) third most informative latent dimension L3. The arrows indicate the direction of change
for the major peaks as the given latent dimension is traversed from negative to positive values. The absorbance bands in the 1400−1200 cm−1

frequency window are shown at 30% of their original intensity to clearly visualize changes across the entire spectrum. The saturated CH2 bending
modes, in the 1520−1400 cm−1 region, are omitted from the spectrum.
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terminal vinyl unsaturations, respectively.3−5 The intensity
maps show the spatial distribution of the integrated absorbance
intensity in these frequency windows for each of the three
sample types.
The hyperspectra, as shown in Figure 2, capture the

physicochemical state of the pipe as snapshots in time that
contain information on aging, degradation, and cracking.
However, it is difficult to identify and understand relationships
between the mapped intensities in each frequency window, the
different sample types (virgin, used, cracked), and specific
features in the images, e.g., cracks and surfaces. For example,
significant differences in absorbance are observed in the
carbonyl region (Figure 2a−c) across sample types. The virgin
sample exhibits strong and nearly uniform carbonyl region
intensity. The used and cracked samples exhibit lower carbonyl
contents compared to the virgin sample, yet regions close to
the inner wall surface (left side of the image) and the crack
(which extends into the pipe wall from the inner surface)
display elevated carbonyl content relative to the surrounding
regions. This suggests that multiple processes leading to
carbonyl depletion and carbonyl growth can occur in the pipe
during in-service use. The 1400−1320 cm−1 intensity maps
(Figure 2d−f), dominated by amorphous PE bands, show
subtle differences between sample types and differences
between surfaces/cracks and the bulk. The 1200−1120 cm−1

intensity maps (Figure 2g−i) show dramatic differences
between the virgin sample and those that have experienced
in-service conditions. However, the used and cracked samples
appear very similar. The terminal vinyl unsaturation intensity
maps (Figure 2h−j) all show elevated vinyl content near the
surface, and the in-service samples show elevated levels in the
bulk compared to the virgin sample. In summary, patterns and
relationships between spectral regions, sample types, and image
features cannot readily be identified and analyzed by examining
data representations such as these intensity maps.

The absorbance intensity maps in Figure 2 show the spatial
distribution of different functional groups in the samples.
Although this representation of the data is useful for visualizing
common metrics like carbonyl or terminal vinyl content, these
metrics do not necessarily align with the generative factors of
variance in the data, which can make their interpretation
difficult.4,5,20,36 In contrast, disentangled data representations
tend to align with the data generative factors and are
independent and interpretable.5,20,21 β-VAEs are a class of
deep learning models that are excellent at learning disentangled
data representations.5,20,21 We have previously trained a β-VAE
on a diverse data set of IR spectra of virgin, aged, in-service,
and cracked PEX-a pipe.5 In the present study, we have
expanded the size and IR frequency window of our training
data set to train and tune a new β-VAE model on this larger
data set. The result is an updated model that is very similar to
that described in ref 5 but now contains more information
obtained by expanding the spectral range to include
absorptions in the 1400−1200 cm−1 region, which are
associated with the CH3 bending and CH2 wagging modes
of amorphous PE. The trained β-VAE model consists of an
encoder that can compress new data to the lower dimensional
latent space of learned (disentangled) representations and a
decoder that can generate new spectra from the latent space.
We use both the encoder and decoder to analyze new data and
to understand the physicochemical meaning of learned latent
representations.

In Figure 3, we show the IR spectra generated by the
decoder by individually traversing the three most informative
latent dimensions, i.e., those with the largest KL divergences,
holding all others constant (see the Supporting Information for
all latent dimension traversals). In this way, we can understand
the spectroscopic and physicochemical meaning of the
individual latent dimensions. The arrows indicate the direction
of change for the major peaks as the given latent dimension is
traversed from negative to positive values. In Figure 3a, we

Figure 4. Collage of optical microscopy images (top row) and learned latent dimension heat maps of virgin, used in-service, and cracked PEX-a
pipe for latent dimensions L1 (a−e), L2 (f−j), and L3 (k−o). The inner surface of the pipe wall is on the left of each image, and cracks extend from
the inner surface into the pipe wall. The scale bars in the optical microscopy images correspond to 200 μm. The spectra (pixels) are filtered by a
MSE of reconstruction threshold (MSE < 0.15) to remove noise from the images.

ACS Applied Materials & Interfaces www.acsami.org Research Article

https://doi.org/10.1021/acsami.3c02564
ACS Appl. Mater. Interfaces XXXX, XXX, XXX−XXX

E

https://pubs.acs.org/doi/suppl/10.1021/acsami.3c02564/suppl_file/am3c02564_si_001.pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02564?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02564?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02564?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsami.3c02564?fig=fig4&ref=pdf
www.acsami.org?ref=pdf
https://doi.org/10.1021/acsami.3c02564?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


show the spectra generated by traversing the most informative
latent dimension L1. To show the spectral changes most
clearly, the L1 traversal is initialized using the latent
coordinates for a virgin pipe spectrum. As L1 is traversed
from negative to positive values, the absorbance peaks at 1740
and 1170 cm−1, corresponding to ester C�O and C−O
groups, undergo large decreases, while peaks at 1700 and 1570
cm−1, corresponding to carboxylic acid C�O and carboxylate
COO− groups, increase in intensity.4,5 These changes are
consistent with hot water-driven hydrolysis of stabilizing
additive ester linkages, as observed in previous studies.4,5,37−42

In Figure 3b, we show the spectra generated by traversing the
second most informative latent dimension L2. The L2 traversal
is initialized using the latent coordinates of a used in-service
pipe spectrum. As L2 is traversed from negative to positive
values, the absorbance peaks at 1720 and 908 cm−1 undergo
large increases. These peaks correspond to major products of
PE degradation: ketone carbonyl and terminal vinyl groups,
respectively.3,5 Major decreases occur in the 1400−1275 cm−1

region that is associated with the CH3 bending and CH2
wagging modes of amorphous PE and weaker decreases at
1080 cm−1 that is associated with the PE backbone C−C
stretching modes.43 Taken together, these changes are
consistent with the oxidative degradation and chain scission
of amorphous PE components of the PEX-a pipe matrix. In
Figure 3c, we show the spectra generated by traversing the
third most informative latent dimension L3. The L3 traversal is
also initialized using the latent coordinates of a used in-service
pipe spectrum. As L3 is traversed from negative to positive
values, the absorbance peaks at 1720 and 1620 cm−1 increase
in intensity with subtle changes elsewhere. These peaks are
consistent with ketone carbonyl and conjugated alkene
functional groups.5

The spectroscopic variance and physicochemical factors that
underly the three most informative latent dimensions are very
similar to those learned in ref 5 and correspond to stabilizing
additive ester hydrolysis (L1), amorphous PE oxidation and
chain scission (L2), and degradation characterized by the
increased carbonyl and conjugated alkene content (L3), which
is specific to cracks in PEX-a pipe as discussed below. An
important improvement in the present model is the explicit
identification of the loss of amorphous PE absorptions (as
opposed to crystalline PE) in conjunction with the oxidation
and chain scission captured by L2. The value of these learned
representations becomes especially clear when we apply the
encoder to new data not used in training, which include
hyperspectral IR imaging data from virgin and used pipe, as
well as pipe with cracks of different lengths.
In Figure 4, we show optical microscopy images and heat

maps of the learned latent representations for cross-sections of
virgin and used in-service pipe and pipe exhibiting cracks of
different lengths. Each pixel in the heat maps corresponds to a
single IR spectrum. To generate the heat maps, the trained
encoder of the β-VAE model is applied to each spectrum in the
IR images, and the corresponding latent value for each of L1,
L2, and L3 is mapped to its (x, y) spatial coordinate. The heat
maps show the spatial distributions of learned latent variables,
with red corresponding to positive latent values and blue
corresponding to negative latent values. The latent values
correspond to the degree to which the learned representation
of an underlying generative factor is present at a given (x, y)
location. For all cases, blue (negative values) indicates the
absence, and red (positive values) indicates the presence of the

physicochemical factor. As the latent values become increas-
ingly positive, the spectra increasingly differ from the spectra of
virgin pipe that has yet to experience aging conditions, such as
in-service use, where degradative processes occur. The
hyperspectra are filtered by a MSE of reconstruction threshold
(MSE < 0.15) to remove pixels that are not well described by
the β-VAE model. This excludes data with generative factors
that are very different from those learned during training. For
our current data, which is well described by the β-VAE model,
this is a convenient way of removing noise from the images.
For example, the noisy spectra measured in the empty space of
the gap in the large 1600 μm long crack are readily filtered out
of the images in Figure 4e,j,o.

The spatial distributions of the latent values in Figure 4 are
consistent with our understanding of their physicochemical
meaning and previous studies: hydrolysis L1 pervades the
interior bulk of the pipe, oxidative damage L2 is confined to
regions adjacent to surfaces exposed to water, and crack-
specific degradation L3 is confined to regions near cracks.4,5

The heat maps are snapshots in time that capture the
physicochemical state of the pipe. We can understand the
progression of the physicochemical factors of aging and
degradation in PEX-a pipe by more closely examining the
behavior of L1, L2, and L3 between sample types and within
individual samples.

We can examine the L1 row in Figure 4a−e to see the
progression of stabilizing additive ester hydrolysis across the
pipe wall thickness. For L1, the latent values range from about
−0.3 to 0.3 for virgin and extensively hydrolyzed samples,
respectively. The nearly uniform blue color in the virgin pipe
L1 heat map (Figure 4a) indicates the absence of ester
hydrolysis. The used in-service L1 heat map (Figure 4b)
reveals nearly uniform and extensive hydrolysis, as do the L1
heat maps of pipe cracks in Figure 4c,d. Interestingly, in Figure
4e, in which there is a larger field of view, we can see that
hydrolysis has progressed through almost the entire pipe wall
thickness, but there remains a region near the outer surface
that retains non-hydrolyzed additive (although the hydrolysis
near the outer surface is greater than that in the virgin pipe).
We note that the hydrolysis extends even further across the
pipe wall thickness near the tip of the crack, with extensive
cracking resulting in a more rapid advance of the hydrolysis
front near the crack tip. This likely occurs because of the
aqueous environment that accompanies the development and
propagation of cracks.

The latent variable heat maps exhibit distinct localized
variations with respect to distance from key physical features
such as surfaces and cracks. We characterize these variations
with sigmoidal functions and quantify the latent variable
gradients with depth and width parameters. We investigate the
additive hydrolysis behavior around the transition zone that is
evident in Figure 4e. To quantify the gradient in the degree of
hydrolysis, we consider a line profile of L1 pixels, locally
perpendicular to the hydrolysis front, and fit this profile to a
sigmoidal function. In Figure 5, we plot the L1 values as
function of position within the profile (inset image in Figure
5). From the best fit to the sigmoidal function, the center of
the hydrolysis transition zone is identified by the inflection
point d0, and the width of the transition is characterized by the
width parameter Δ = 43 μm. This gradient width likely reflects
fundamental aspects of the complex hot water-driven second-
order autocatalytic hydrolysis process3 including the depend-
ence of the reaction on temperature and diffusion. The trained
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β-VAE model enables automated reproducible identification
and quantification of this process.
For the L2 row heat maps in Figure 4f−j, the latent values

range from about −0.1 to 0.3 for virgin and extensively
oxidized samples, respectively. The regions near the inner wall
surface of all samples exposed to in-service conditions
exhibited elevated L2 values associated with oxidation, chain
scission, and amorphous PE loss. In contrast, the virgin sample
was uniform in color with low values of L2 (blue), indicating
only low levels of degradation and suggesting that changes in
L2 are associated with exposure to water in in-service
conditions. We fit the variation in L2 with distance near the

inner surface of pipes exposed to in-service conditions using a
sigmoidal function. In Figure 6, we show L2 distance profiles
for in-service and cracked samples. The profiles are well
described by fits to a sigmoidal function, where the d0 and Δ
values correspond to the best-fit penetration depth and
gradient width of the degradation front, respectively. For the
selected profiles, d0 varies between 68 and 171 μm and Δ
varies between 30 and 49 μm. It is difficult to compare d0 and
Δ values between samples because the inner surfaces are
degraded, poorly defined, and exhibit noisier spectra that do
not meet the reconstruction quality threshold (MSE < 0.15).
Nonetheless, the d0 and Δ values for different samples have
very similar values, relative to the scale of the pipe wall
thickness (∼2 mm), and the values of the lower asymptotes
(a1) are nearly identical. The large, localized increases in the
L2 values near the inner surface of all samples show that the
degradation described by L2 is related to processes that occur
at the inner surface. This, together with the absence of elevated
L2 values at the outer surface of Figure 4j, shows that the L2
degradation processes are directly related to exposure to water
flowing through the pipes. For the cracked samples (Figures
4h−j and 6b−d), we note that, with respect to the interior bulk
of the pipe wall, the pixels adjacent to the cracks exhibit
elevated L2 values and are positively correlated with crack
length. Finally, we can see that, unlike additive hydrolysis
described by L1 that penetrates deep into the pipe wall, the
amorphous PE degradation L2 process is restricted to
interfacial regions near surfaces that are directly exposed to
water. The immediate surface degradation of amorphous PE in
PE pipes has been observed before and may be due to highly
reactive “superoxidant” species.44

Figure 5. Hydrolysis profile (latent variable L1 versus distance) along
dashed line in the inset image. The red line corresponds to the best fit
to the sigmoidal function shown as an inset to the figure,
characterized by a distance d0 at the midpoint of the sigmoidal
function of width Δ.

Figure 6. Variation of L2 latent variable values with distance measured locally perpendicular to degradation fronts (see the inset images) for (a)
used in-service pipe (r2 = 0.994), and pipes with cracks of length (b) 480 μm (r2 = 0.990), (c) 800 μm (r2 = 0.992), and (d) 1600 μm (r2 = 0.978).
The red curves correspond to the best fits of the profiles to the equation shown as an inset to part (a). The best fit values of d0 and Δ are shown in
the insets of each plot.
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Figure 7. Variation of L2 and L3 latent variable values with distance measured along the crack propagation trajectory (see the inset images) for
cracks of length (a,c) 480 and (b,d) 800 μm. The red curves correspond to the best fits [(a) r2 = 0.953, (b) r2 = 0.969, (c) r2 = 0.952, and (d) r2 =
0.975] of the profiles to the equation shown as an inset to part (a). The best fit values of d0 and Δ are shown in the insets of each plot.

Figure 8. Two-dimensional (2D) latent encodings (L2 and L3) for the IR images of (a) used in-service pipes (Figure 4g,l) and pipes that exhibited
cracks of length (b) 480 μm (Figure 4h,m), (c) 800 μm (Figure 4i,n), and (d) 1600 μm (Figure 4j,o). The symbols used to represent the data
points are highly transparent to reveal the density of the data points and the trajectories of surface-associated degradation (green arrow) versus
crack-associated degradation (red arrow).
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We can better understand the physicochemical changes
associated with crack formation and propagation by examining
the L3 row heat maps, as shown in Figure 4k−o. For L3, the
latent values range from about −0.1 to 0.3 for virgin and
cracked regions, respectively. The virgin and used pipe L3 heat
maps in Figure 4k,l are uniformly blue, corresponding to
uniformly low levels of L3. The remaining heat maps (Figure
4m−o) show different stages of cracking, with elevated levels
of L3 near the cracks: a short, early-stage crack (Figure 4m), a
longer crack that has propagated nearly halfway through the
pipe wall (Figure 4n), and a pipe with extensive cracking in
which the crack has propagated ∼75% through the pipe wall
(Figure 4o). The L3 heat map for the short, early-stage crack
(Figure 4m) exhibits elevated values at the tip and, to some
extent, along the length of the crack. For the medium length
crack (Figure 4n), the L3 values at the tip and along the length
of the crack are comparable with those for the short, early-
stage crack. The longest, late-stage crack (Figure 4o) exhibits
elevated L3 values along the length of the crack but with less
intensity than that for the medium length crack. In all cases,
the elevated L3 values do not extend all the way to the inner
surface, reaching only ∼200 μm from the inner wall surface
where the effects of oxidation (L2) are dominant. There are
two possible explanations for this behavior: either extensive L2
oxidation at the inner surface has eliminated functional groups
associated with L3 degradation, thereby obscuring its presence
at an earlier stage of cracking, or the L3 degradation does not
occur at the surface. Further work on earlier stage cracking will
examine this point.
In Figure 7, we plot the variation of the L2 and L3 latent

variable values with distance along the crack propagation
trajectory, extended into the pipe wall from the leading edge of
the crack, for the short, early-stage 480 μm long crack and the
more advanced 800 μm long crack. The L2 and L3 profiles are
well described by fits to a sigmoidal function, for which the d0
and Δ values correspond to the best-fit penetration depth and
gradient widths of the latent variables, respectively. The
penetration depth values, d0, range between 32 and 61 μm and
are very similar across latent dimensions within each cracked
sample. The gradient width values, Δ, range between 13 and
17 μm and are very similar across samples (i.e., the short, early-
stage crack, and more advanced crack) and latent dimensions
(i.e., L2 and L3). Interestingly, this shows that the penetration
gradient of L2 and L3 into the pipe wall, ahead of the leading
edge of the cracks, follows approximately the same distance
dependence (despite the medium length crack being at a more
advanced stage with significantly more intense L2 and L3
values than the short, early-state crack). This suggests that the
degradation associated with the L2 and L3 generative factors
can occur in the same regions and may act in concert with one
another at the leading edge of a propagating crack.
In Figure 8, we represent the IR images of the in-service and

cracked samples as two-dimensional latent encodings, by
plotting L3 vs L2, which allows us to examine the relationship
between L2 and L3 more closely. Figure 8a shows the (L2 and
L3) representation of the used in-service sample (Figure 4g,l).
The data trajectory is essentially parallel to the L2 axis because
of the dominance of the L2 surface gradient discussed above
(Figures 5 and 6). In Figure 8b, we see the emergence of a
trajectory that runs nearly parallel to the L3 axis, which we
associate with the presence of a short, early-stage crack. This
trajectory also contains a small contribution from L2 (Figure
4h,m). In Figure 8c, for the medium crack, we see the

extension of the crack-associated trajectory (Figure 4i,n) to
larger values for both L2 and L3, with the trajectory direction
in the L2−L3 space nearly identical to that for the short, early-
stage crack. We note that the density of points lying in the
space between the surface-associated trajectory and crack-
associated trajectory is larger for the medium crack than that
for the short, early-stage crack. For the longest late-stage crack
(Figure 8d), the crack-associated trajectory is less well defined
with a substantial increase in the density of points lying
between the crack-associated and the surface-associated
trajectories. We suggest that this behavior occurs because, as
the cracking becomes more extensive, the water flowing
through the pipe penetrates the crack, resulting in surface-
limited physicochemical changes associated with L2. As the
physicochemical changes described by L2 progress, the
physicochemical and spectral signature of L3 is lost. The
“filling in” of the space between the two trajectories likely
captures this process as the points migrate from L3 to L2.
Although the increased ketone carbonyl and conjugated alkene
content associated with L3 seems to be essential for cracking,
the oxidation, chain scission, and amorphous PE loss described
by L2 may also be an important contributor, which is
consistent with the distance profiles quantified in Figure 7.

■ SUMMARY AND CONCLUSIONS
The application of a trained β-VAE model has significantly
enhanced the analysis of the hyperspectral IR images,
providing a comprehensive and highly spatially resolved
representation of the physicochemical changes that can occur
in PEX-a pipes during in-service use. The relationships
between the latent variables L1, L2, and L3 near the cracks
are especially informative. The stabilizing additive hydrolysis
described by L1 is present throughout the bulk of all the in-
service samples, regardless of the presence of cracks. Changes
to L1 are associated with a detrimental aging process since
stabilizing additives are oligomerized via ester linkages to
inhibit their migration within the pipe wall, and cleavage of this
linkage reduces their molecular weight and could lead to
increased diffusive loss and reduced additive performance.
Similarly, the oxidative degradation, PE chain scission, and
amorphous PE loss described by L2 are present at the inner
surface of all in-service samples, regardless of the presence of
cracks. This can also be considered to be a detrimental
degradative process, but it may not be a crucial contribution to
cracking as it is also observed in samples without cracks. In
contrast, the elevated ketone carbonyl and conjugated alkene
content captured by L3 is only observed in the immediate
vicinity of cracks. This suggests that the physicochemical
changes described by L3 are necessary for crack progression.
We note that elevated L2 values also occur near the cracks and
appear to be coincident with increases in L3, and the two
factors may be cooperatively responsible for crack propagation.

The high-spatial resolution tracking of physicochemical
changes associated with aging, degradation, and cracking in
PEX-a pipe that is enabled by the β-VAE analysis provides new
insights into pipe stability and lifetime. It is our hope that this
will provide PEX-a pipe manufacturers with a new tool�by
tailoring the training of the β-VAE model to their specific
additives, manufacturing history and stress-testing protocols,
they will be able to extend the use of their pipes into ever more
vigorous and challenging operating environments.

More generally, the results of the present study show how
representation learning via deep generative modeling can be
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used to extract meaningful and interpretable information from
complex high-spatial resolution hyperspectral images, with the
potential to extend the applications of IR imaging to other
complex cases such as biomedical imaging.
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