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Abstract: For the problem of classification and identification of defects in polyethylene (PE) gas
pipelines, this paper firstly performs preliminary screening of the acquired images and acquisition
efficiency of defective image acquisition was improved. Images of defective PE gas pipelines were
pre-processed. Then, edge detection of the defective images was performed using the improved
Sobel algorithm and an adaptive threshold segmentation method was applied to segment the defects
in the pipeline images. Finally, the defect images were morphologically processed to obtain binary
images. The obtained binary images were applied with VGG16 to complete the training of the defect
classifier. The experimental findings show that in the TensorFlow API environment, the test set’s
highest accuracy reached 97%, which can achieve the identification of defect types of underground
PE gas transmission pipelines.

Keywords: image pre-processing; classification; identification; VGG16; threshold segmentation;
pipeline defects

1. Introduction

In the past decades, polyethylene (PE) pipelines have been widely used in natural
gas networks around the world because of their flexibility and corrosion resistance [1].
Therefore, the long-term performance of PE pipes and their materials is of great concern
to date [2]. According to international natural gas pipeline accident statistics, natural
gas pipeline defects are frequently caused by localized corrosion [3], operator mistakes,
defective materials, and construction flaws [4]. As the use of pipelines for transporting
hazardous substances becomes more popular worldwide, the possibility of major accidents
caused by pipeline failures is gradually increasing [5]. For example, the explosion caused
by a gas pipeline leak in a residential building in Slovakia in 2019, which killed at least
seven people, reminds us that gas pipelines must be checked regularly [6]. There are
many nondestructive inspection methods for gas pipelines in practice (e.g., ultrasonic-
based sensors, laser-based systems, etc.), and compared to other inspection techniques
commonly used for PE pipelines, due to their distinctive benefits of intuitiveness, accuracy
and convenience, visual inspection techniques have been used extensively in a variety of
fields [7]. Pipeline defect detection robots equipped with intra-visual inspection of image
processing technology can directly collect, transmit and process images, reducing labor
costs [8].

Traditionally, automatic classification of images is carried out using extracted image
features, which are used to represent unclear information in the original pixel values. Con-
volutional neural networks (CNN) have taken the place of that approach in recent years [9].
Image pre-processing, which includes image de-noising [10], image enhancement [11],

Appl. Sci. 2022,12,11697. https:/ /doi.org/10.3390/app122211697

https://www.mdpi.com/journal/applsci


https://doi.org/10.3390/app122211697
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-9619-1184
https://doi.org/10.3390/app122211697
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app122211697?type=check_update&version=1

Appl. Sci. 2022,12,11697

20f15

image segmentation [12], morphological operations [13], etc., is generally performed before
image classification. Based on image pre-processing, Zhou et al. [14] investigated an im-
proved spline local mean decomposition (ISLMD), proposed to be CNN-based and enabling
noise reduction of images to locate pipe leakage locations. Ma et al. [15] proposed a sewer
multi-defect detection system based on CNN-style GAN-SDM image pre-processing, and
the proposed model’s average accuracy and macro F1 score were 95.64% and 0.955, re-
spectively. Hosseinzadeh et al. [16] presented a small and simple probe design that was
used to check small-bore pipes for defects. Hua et al. [17] developed a visual recognition-
based pipeline fault detection algorithm. It is capable of both autonomous localization and
pipeline fault detection.

Several frameworks based on the original CNN structure have been proposed to
enhance target detection performance as a result of the advancement of CNN technology
and classification, such as R-CNN [18], Fast R-CNN [19], SSD [20], YOLO series [21],
etc. In this paper, a CNN-based classification framework for PE pipe defect detection is
proposed, which can automatically extract the abstract features of defects for accurate
classification of three defects, including cracks, fractures, and holes. In this paper, three
different algorithms are applied to the existing framework and the confusion matrix is
used to determine which model framework has the highest accuracy. The experimental
results indicate that the highest accuracy of the test set in this paper reached 97% in the
environment of TensorFlow APL

2. Image Pre-Processing

The pre-processing of pipe images does more than remove noise; it also enhances the
contrast between the pipeline’s background and any pipeline defects, making it simpler
to locate and categorize pipeline defects [22]. Figure 1 depicts the image pre-processing
process used in this paper.
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Figure 1. Image pre-processing process.

2.1. Greyscale Processing for Pipeline Images

Grayscale is an important feature to characterize the brightness and darkness of an
image. In recent years, on the basis of image grayscale differences and discontinuous
changes, it has been used in target recognition, image segmentation, and machine vision
technique [23]. Grayscale occupies less memory and enables faster computer operations
compared to color images. The mean value method, maximum value method, and weighted
average method are the three commonly used techniques for transforming color photos
into grayscale.

Where the maximum value method is to directly take the value of the component with
the largest value among the three components of a R,G,B Equation (1). Red (R), green (G)
and blue (B) are the three color channels of color images.

R =G =B =max(R,G,B) 1)

The mean method is to take the mean of the values in the three components of R,G,B
Equation (2).
R=G=B=(R+G+B)/3 (2)

The weighted average method is based on the sensitivity of the human eye for the
R,G,B’s three colors, according to a certain weighted average, obtained in Equation (3).

I(u,v) = 0.3 x Ig(u,v) +0.59 x Ig(u,v) +0.11 x Iz(u,v) ©)]
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where: I(1,0) denotes the gray value at coordinate, Ir(1,v), Ip(1,v) and I¢(u,v) denote the
luminance value of the pixel’s three color components, respectively.

The maximum value method (Figure 2B1-B3), the average value method (Figure 2C1-C3),
and the weighted average method (Figure 2D1-D3) were used to grayscale process the
three original defect images (Figure 2A1-A3) of cracks, fractures and holes, respectively.
From Figure 2, it can be seen that the weighted average method produces the best results for
the grayscale image, and the grayscale image has moderate brightness and does not cover
the characteristics of the pipe defects. As a result, the image grayscale uses the weighted
averaging method.

A3 B3 c3 D3

Maximum value
method

Weighted average

Average method method

Origial defect image

Figure 2. Comparison of grayscale processing methods for pipe defect images.

2.2. Defect Image Acquisition

We compared and examined the continuously captured PE pipeline images and dis-
covered that: 1. the percentage of pipeline defects in the entire PE gas pipeline network
system is small; 2. there is a significant grayscale discrepancy between the defective and
normal parts of the grayscale processed defective images; 3. after grayscale processing of
any two adjacent PE pipeline images, there is a significant grayscale discrepancy between
the normal PE pipeline images and the defective PE pipeline images in the same position,
while the grayscale discrepancy between the two normal PE pipeline images is very small.
Thus, in order to determine whether there are defects in the pipeline images, we propose
a screening method for pipeline defects to improve the detection effectiveness [24].

First, let x and y be consecutive images of any adjacent PE pipes in our pipe database,
and A be the greyscale discrepancy between x; and vy, which is the correspondent pixel
locations of the two images x and y, as shown in Equation (4). However, there will be
some information loss during the compression and transmission of the image data [25],
which will make the corresponding pixel grayscale values of the two adjacent images differ
greatly, even if they are both normal, resulting in incorrect judgments of the system. To
decrease this error, we improve the grayscale discrepancy A of two corresponding pixels to
the grayscale discrepancy of the corresponding region A, which is the mean of the grayscale
discrepancy of all pixels in the designated size region, as shown in Equation (5).

A = |xp — yil 4)

1o
A=) |x— vl )
Sn k21
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where S, denotes number of pixels in designated size region.

Then, for the minimum mean A; of the pixel grayscale discrepancy between the
defective pipeline images and the normal pipeline images computed in the designated size
region, a statistical method can be used; the number of pixels with the smallest defect area
is calculated statistically as M, let the length of the defect area image be M pixels, the width
be My, pixels, as shown in Equation (6).

M = My x M; (6)

Finally, to further improve the accuracy of defect detection, we set the discrepancy
Apin to be somewhat less than A;. When A > A, it is judged as abnormal and the
number of pixels in the abnormal area is counted as B, when A < Ay, itis judged as
normal and the number of pixels in the normal area is counted as B1; calculate B1 and B
according to Equation (6). If B > M, then there are defects in x and y, otherwise x and y are
considered as normal images.

More than 9000 consecutive images of pipes were screened using the above defect
screening method (Figure 3). A total of 160 out of 163 defective images were picked out,
and the screening accuracy rate was up to 98.15%. Figure 3 can better help us understand
the PE pipeline defect detection algorithm.

start
Read in the sequence of images

Calculate the grayscale difference A of pixel
points corresponding to Image x and y

n
1
A= Z|X|, = Vil
Su
k-1

NO
A2A,, Statistical B1
YES
Statistical B
B>M NG All are normal phenomena
YES

one of the x and y has a suspected defect

End
Figure 3. PE gas pipeline defect screening algorithm.

2.3. Images Enhancement for Pipe Defects

Image enhancement is the process of enhancing an image’s display by highlighting its
edges and significant texture details and suppressing the display of unimportant areas. This
somewhat enhances the image’s visual impact [26] or highlights some “useful” and com-
presses other “useless” information in the image. In this paper, global histogram equalization
(Figure 4B1-B3), adaptive histogram equalization (Figure 4C1-C3), and gamma transform
(Figure 4D1-D3) was applied to enhance the image of the grayscale (Figure 4A1-A3).
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Figure 4. Comparison of pipeline defect image enhancement effect.

Figure 4 illustrates that after the gamma transform, the defect image is not distorted;
additionally, the defect’s edges become more noticeable and stand out against the back-
ground with a greater difference. In order to increase the contrast between the background
of the pipe and the pipe defects, gamma transform was applied.

2.4. Pipe Defect Images Filtering and Denoising

During image transmission, the final image is often received with a lot of noise
due to the interference of the environment or the limitations of the equipment. Image
denoising is a classical image recovery task aiming to predict clean images from noisy
observations [27]. Bilateral filtering (Figure 5B1-B3), Gaussian filtering (Figure 5C1-C3),
mean filtering (Figure 5D1-D3), and adaptive median filtering (Figure 5E1-E3) were applied
in this paper to denoise the images obtained above (Figure 5A1-A3).

B3 F3

Adaptive median
filtering

Gamma transform Bilateral filtering Gaussian filtering Mean filtering Dual filtering

Figure 5. Comparison of pipeline defect image filtering methods.

Step-by-step processing is a very common tactic for resolving complicated noisy
images [28]. One of the weighted averages used for bilateral filtering is based on Gaussian
distribution, which removes Gaussian noise from the image. However, the removal of
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Gaussian noise will ignore salt-and-pepper noise, and adaptive median filtering is the best
algorithm to remove salt-and-pepper noise; however, it has poor results when removing
Gaussian noise [24], Therefore, it was proposed to use dual filtering (Figure 5F1-F3) to
remove the Gaussian noise by bilateral filtering after removing the salt-and-pepper noise
by median filtering. Compared to other filtering algorithms, the dual filtering preserves
the details of the edges and eliminates the noise points to achieve the effect of keeping
the edges (as shown in Figure 5). Therefore, dual filtering was used for noise reduction in
this paper.

3. Image Edge Detection and Segmentation for Pipe Defects

Image edges are the most basic feature of an image and using this feature the image
can be segmented. In many imaging applications, it is sufficient to detect the periphery of
an unknown object [29]. Image segmentation is usually performed before image feature
quantization [30]. Threshold segmentation is a pixel-division technique used in region-
based image segmentation, according to gray levels, into regions that have consistent
properties, while neighboring regions do not have such consistent properties.

3.1. Improved Edge Detection with Sobel Operator

The conventional Sobel operator first performs a weighted average process for each
pixel using a convolutional template (shown in Figure 6) and then acquires the gradient
values in the X and Y directions by performing a difference process. It is challenging for
the algorithm to achieve the desired detection results and the localization accuracy is not
satisfactory, because the prevalent Sobel algorithm is just sensitive to the X directions and Y
directions and can only assess the edges in both X directions and Y directions [24]. Various
shapes and depths of the PE gas pipeline defects lead to negligible regional variations in the
grayscale of the deficiency images; the collected images of PE gas pipeline defects contain
a lot of interference data because of compression and real-time transmission. It is ineffective
and very likely to result in missing edges, relying solely on two directional templates to
identify the edges of pipe defects. In order to detect edge pixels in images more accurately,
the Sobel algorithm was improved to eight directions [31] (as in Figure 7), which not only
detects image edges more effectively but also increases edge detection accuracy and lowers
the likelihood of incorrect edges.

-1 0 +1 -1 {2 -1
= 0 T 0 0 0

=1l 0 +1 +1 | +2 | +]
Finds verticals Finds horizontals

Figure 6. Sobel operator template.

For the pipe defect filtered image obtained above (Figure 8A1-A3), the improved Sobel
algorithm (Figure 8B1-B3), the Sobel edge detection algorithm (Figure 8C1-C3) and the
Prewitt algorithm (Figure 8D1-D3) are used for edge detection of the image, respectively.
Figure 8 displays the outcomes of the three defects’” edge detection. According to the
comparison study, the improved Sobel algorithm extracts defect edges with more continuity
and integrity and can completely display the defect shape characteristics. Therefore, the
improved Sobel algorithm was used for edge detection in this paper.
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Figure 8. Comparison of pipeline defect image edge detection.

3.2. Adaptive Threshold Segmentation

In the case of inhomogeneous illumination or uneven distribution of gray values,
the segmentation results obtained if global threshold is used are often unsatisfactory,
and adaptive threshold (also called local segmentation) can produce good results [32].
Adaptive threshold segmentation does not use one threshold for the whole matrix as
a global threshold, but has a corresponding threshold for each value at each position of the
input matrix.

The images (Figure 9A1-A3) present a comparison after the above edge detection
was processed by adaptive threshold (Figure 9B1-B3), global threshold (Figure 9C1-C3)
and Otsu threshold segmentation (Figure 9D1-D3), respectively. According to visual
observation, an adaptive threshold can be used to distinguish pipeline defects from the
pipe background, with the best segmentation of PE gas pipeline defects, with complete
edge segmentation and less disturbing information. Therefore, the adaptive threshold
algorithm was used to segment the image in this paper.
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Figure 9. Comparison of pipeline defect image threshold methods.

3.3. Morphological Operation

The shape of features in an image is typically the focus of morphological operation. It
has been applied to eliminate defects in a variety of shapes with the purpose of smoothing
the contours and preserving the object’s size and shape [33]. Erosion and dilation are the
two main operations.

Let f(m,n) be the input image and g(m,n) be a structure element, If the set of real
integers is denoted by Z, while assuming that (m,n) is an integer f(m,n) from Z*Z, g(m,n)
is a function of a pixel’s gray value with the given coordinates (1,1) and the gray value
is also an integer. Namely, g(m,n) to f(m,n) for grayscale dilation can be defined as f @ g,
which is shown as Equation (7).

(f ©8)(s,t) = max{ f(s —m,t —n) +g(m,n) | (s—m), (t=n) € Dy (m,n) € Dy} (?)

Equation (7) Dy, Dy is the definition domain of f(m,n) and g(m,n), respectively, g(m,n) is
the structural element of the morphological treatment is also a function, the displacement
parameters (s — m), (t — n) must be in the definition domain of the function f(m,n).

The dilation operation is to find the local maximum value, and the anchor point is
assigned the maximum of pixels in the nucleus coverage area. The erosion operation is to
find the local minimum value. The minimum value of the pixel in the kernel coverage area
is assigned to the anchor point. Erosion of grayscale image is defined as Equation (8).

(f ©8)(s,t) = min{ f(s +m,t +n) = g(m,n) | (s+m), (t+n) € Dy (m,n) € Dy} (8)

Equation (8) Dy, Dy is the definition domain of f(m,n) and g(m,n), respectively, g(m,n) is
the structural element of the morphological treatment is also a function, the displacement
parameters (s + m), (t + n) must be in the definition domain of the function f(m,n).

The expressions for the opening operation and closing operation of the grayscale
image have the same form as the erosion and dilation, and the structural element g(m,n)
performing the opening operation on the image f(m,n) can be defined f o g, in Equation (9).

fog=(fog)eg )
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The opening operation is an erosion operation of g(m,n) on f(m,n) followed by an
dilation operation on the result of the erosion. A similar closing operation of g(m,n) on
f(m,n) can be defined f - g in Equation (10).

f-8=(f®g)og (10)

In addition to the above operations, there is the morphological gradient operation; let
the gradient be denoted by h in Equation (11).

h=(f®og)-(fOg) (11)

The basic morphological operations: closed operation (Figure 10B1-B3), dilation
(Figure 10C1-C3), erosion (Figure 10D1-D3), morphological gradient (Figure 10E1-E3),
and opening operation (as in Figure 10F1-F3) are applied to the threshold segmentation
image obtained above (Figure 10A1-A3) to compare the results. As shown in Figure 10,
The opening operation’s result is to remove the image area that is slightly relative to the
structure element and keeping the image area that is larger than the structure element [34].
The open operation more fully preserves the overall impact, and in this paper, we use the
opening operation to fill the contours of defects in the images.

\\\ xR R
R S
\ N\ ‘_
‘ \ (i\.\’ ) \
1 W~ \ R

B3 ca D3 E3 F3
Closing operation Dilation Morphological

A3
Adaptive
threshold method gradient operation

Erosion Opening operation

Figure 10. Comparison chart of different morphological operations.

4. CNN-Based Image Defect Classification

The CNN's primary characteristic is that its front-end input obtains image information
by using multiple layers of locally interconnected neurons. The CNN can extract view
invariant features [35] and takes full account of the translation, rotation, and scaling in space.
Deep learning and convolutional networks have greatly improved the capability of target
detection and classification using images. In this paper, three classification models, VGG16,
Resnet50 and the original CNN model, are used for comparison, and the corresponding
network structures are shown in Figure 11.
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Figure 11. Comparison of three network structures.

4.1. Classification Model

VGG16 has 16 layers, including 3 fully-connected layers, 5 pooling layers, and 13 con-
volutional layers. Resnet50 has 50 layers, including 1 fully-connected layer, 2 pooling layers,
and 49 convolutional layers. The original CNN has 6 layers, including 2 fully-connected
layers, 2 pooling layers, and 4 convolutional layers. The pooling layer is not counted as
a pooling layer when determining the number of layers in the network because it has
no parameters.

4.2. Convolutional Layer

The convolutional layer’s function is to extract the data from the source image, also
referred to as image features. In the CNN architecture, the convolutional layer is typically
the first layer, and the weight (w;;) controls it, where i and j are the number of input and
output feature mappings, respectively [36]. Thus, the entire convolution process can be
defined, as in Equation (12).

aj:=f () aj*xwij+bj) (12)
iGMj
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In Equation (12), * denotes the 2D convolution operation, 4; is the set of input feature
maps, b; denotes the jth underlying feature map, and f denotes the activation function.
In the CNN, each individual convolution layer performs a linear transformation from its
input to the output representation through a multichannel multidimensional convolution
operation. The convolution can be represented as a matrix—vector product, where the
linear transform matrix is derived from the convolution filter and the vector represents the
reshaped input of the layer [37].

4.3. Pooling Layer

The pooling layer’s primary function is to use specific factors to downsample the
input feature mapping size, the average pool averages the features in the neighborhood
to produce a blurring effect [38]. Spatial invariance can be attained by the pooling layer
by lowering the feature map’s resolution. Each feature map that has been combined
corresponds to a feature map from the layer before. Their cells combine inputs from a small
block of n x n cells. The size of the pooling window is flexible, and the windows may
overlap [39]. In this paper, maximum pooling is used.

4.4. Fully Connected Layer

Each feature matrix from the pooling layer is converted by the fully connected layer
into a single column feature macrovector of dimension 1 x m [40]. The most common
layer in a neural network is the fully connected layer, and each of its nodes is connected to
each node in the previous and next layer. The dimensionality may increase, decrease, or
remain constant during the transformation process [41]. In a convolutional neural network
structure for classifying images, the fully connected layer is typically placed at the very
end, and for better fitting the nonlinear problem, three fully connected layers are used in
this paper. The VGG16 framework is shown in Figure 12.

224 x224x3 224x224 x64

112 x 112 x 128

//56|x 56 x 256 —
Y fFXIXx
/ 28x28x512 . . =
{ *‘ &/ & l‘r’ }r '(}?15 1x 1x 4096 1 x 1 x 1000
J

(=) convolution+RelLU
max pooling
fully nected +RelU
softmax

Figure 12. VGG16 framework structures.

4.5. Classification Results

This project was developed using Python and the TensorFlow API, and the graphics
card used for training, verification, and testing was an NVIDIA 2080T1, 32GB, DDR4. Each
training run is 100 epochs (as shown Figure 13). In this paper, to evaluate the classification
effectiveness of the model, the precision and recall of our confusion matrix were applied.
Equations (13) and (14) give their definitions, where, respectively, TP, FP, and FN stand for
true positives, false positives, and false negatives.

.. TP
Precision = TP L EP (13)
TP
Recall = —— (14)

TP+ FN
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Figure 13. Accuracy and loss function of VGG16 model.

Three types of pipe defect images, 100 of each were randomly selected for each
defect as a test set from Tables 1-3, made evident that the VGG16 model’s recognition
accuracy has improved significantly, particularly for cracks and fractures in the pipe
body, where the recognition accuracy can reach an average of 98.5%, while the accuracy
rate of holes is relatively low, but still can reach about 94%. From the confusion matrix
(as shown in Figure 14), as can be seen, the classification algorithm in this paper has
successfully identified three different types of defects with an average recognition rate of
97%. Compared with 94.96% percent of Xie et al. [36], the accuracy rate of this article has
been improved by 2.04%. Compared with the 96.3% percent of Cong et al. [24], the accuracy
rate of this article has been improved by 0.7%, which can be applied to the engineering

practice of pipe defect detection and classification.

Table 1. VGG16 defect classification results.

True Posi-  False Posi-

False Neg-

Defect Type  Picture tive tive ative Precision Recall
Cracks 100 99 1 5 99% 95.19%
Holes 100 94 6 2 94% 97.91%
Fractures 100 98 2 2 98% 98%
Table 2. Resnet 50 defect classification results.
Defect . True False False . .
Type Picture Positive Positive Negative Precision Recall
Crack 100 96 4 7 96% 93.2%
Hole 100 92 8 6 92% 93.87%
Fractures 100 95 5 4 95% 95.96%
Table 3. CNN defect classification results.
Defect . True False False . .
Type Picture Positive Positive Negative Precision Recall
Crack 100 95 5 13 95% 87.96%
Hole 100 87 13 10 87% 89.69%
Fractures 100 89 11 6 89% 93.68%
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Figure 14. Comparison of three algorithms confusion matrix.

5. Conclusions

This paper proposes a framework for classifying and identifying defects of underground
PE gas transmission pipes. Fast and accurate detection of defects in PE pipelines is made pos-
sible through experimental verification. The following are the main results of this experiment.

1.  Based on the similarity of images of continuous pipelines, the images were first grayed
out using the weighted average method and then preliminary screening of the acquired
images was conducted to identify images with suspected defects, which improved the
acquisition efficiency of defect image. For the defective PE gas pipeline images, contrast
was enhanced using gamma transform, and finally noise was removed using the dual
filtering method. The results show that the pre-processing technique can speed up image
processing while retaining much of the detail of the originals.

2. In order to detect the edges of image defects, an improved Sobel algorithm was
presented. An adaptive thresholding segmentation method was used to segment the
defects in the image. Then, after morphologically processing the image to obtain
a binary image, the feature parameters of the defects were extracted.

3. The obtained binary images were trained using VGG16, and the classifier was com-
pleted by selecting appropriate parameters for classification of various defects in
images of the PE gas pipes. The experimental test results reveal that the highest
accuracy of the classification approach adopted in this paper is 97% and it can be used
not only for the identification of defective types of underground PE gas transmission
pipes, but also for steel pipes, cast iron pipes, etc.
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Nomenclature

Xy consecutive images of any adjacent PE pipes in our pipe database
XYk the grayscale discrepancy between the correspondent pixel locations of x, y
Sy number of pixels in designated size region

u,v coordinates of grayscale values

st displacement parameters

m,n the functions f and g are the corresponding coordinates

a represents the convolution operation

bj represents the jth base feature map

f activation function

wj weights

I(u,v)  grayscale values
f(m,n)  input image

g(mn)  structural elements
f@dg  dilation operation
f©g  erosion operation

fog opening operation
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