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A B S T R A C T   

A novel methodology for model selection among competing models for remaining useful life (RUL) prediction is developed in this paper. Due to the long durability of 
polyethylene (PE) pipes under normal conditions, life data under normal operating conditions is not available for model validation and selection. Physics-based, 
regression-based, and hybrid models for RUL prediction are available in the literature based on experimental data under accelerated test conditions. These 
models need to be evaluated for prediction performance under normal conditions, but in the absence of data under normal conditions. A model consistency-based 
metric for selecting the best model in the absence of data under normal conditions is proposed in this paper. The consistency-based metric evaluates the predictive 
consistency of the various probabilistic RUL prediction models over the estimated or known probability distribution of the normal operating conditions. A two-step 
approach for model selection is proposed: first, validation evaluation using empirical data, and second, consistency evaluation under likely operating conditions. The 
proposed model selection methodology is demonstrated using five candidate models for RUL prediction of PE pipes based on accelerated hydrostatic testing data. 
Bayesian inference is used to calibrate these models with empirical data, and its benefit over the least squares approach recommended in ISO 9080 is demonstrated. 
Further, the proposed two-step model selection methodology is compared against traditional model selection methods based on goodness of fit, model complexity and 
information theoretic metrics. It is seen that the proposed additional consistency criterion is successful in selecting the best model compared to existing methods that 
are unable to distinguish between the different available models.   

1. Introduction 

Polyethylene (PE) pipes are widely used in the U.S., with more than 
70,000 miles of PE pipes estimated to be in service at present [1]. These 
pipes are used for many applications such as water distribution, gas 
distribution, and protecting internet cables. PE pipes degrade due to 
various physical and chemical phenomena during their service life. 
Physical degradation mechanisms involve creep, relaxation, secondary 
crystallization, and molecular rearrangements that adversely affect the 
mechanical properties of the pipe. Chemical degradation processes 
involve molecular degradation in the form of chain scission and cross
linking in the polymer material due to external agents (water, ultraviolet 
radiation, chemical pollutants). This often leads to brittle failure of PE 
pipes. Both physical and chemical aging can be accelerated by elevated 
temperature. See Ref. [2] for a detailed discussion on PE pipe aging 
mechanisms. 

Accounting for the degradation processes and predicting the 
remaining useful life (RUL) is essential for the safe and reliable 
deployment and timely replacement of PE pipes. The commonly used PE 
pipe RUL prediction method is based on hydrostatic testing data 
collected under high temperature and pressure conditions [3]. The test 

procedure as well as the RUL prediction method (based on extrapolation 
to normal operating conditions) has been standardized by the Interna
tional Standards Organization (ISO) [4] and the American Society for 
Testing and Materials (ASTM) [5]. Testing and modeling related to low 
crack growth (SCG) and environmental stress cracking (ESC) have also 
been performed for RUL prediction of plastic pipes [6–8], but these are 
outside the scope of this paper. In the hydrostatic testing-based method, 
the form of the RUL prediction model is derived using the Arrhenius 
equation and the known (log-log) relationship between pipe hoop stress 
and failure time, and RUL prediction models with different forms and 
different number of model parameters could be constructed. The RUL 
model building procedure then involves a) conducting hydrostatic pipe 
failure tests under high temperature/stress conditions (accelerated 
failure tests), b) using the accelerated test data to calibrate the model 
parameters, c) validation of the calibrated model, and d) using the 
validated model for RUL prediction under normal operating conditions 
(extrapolation). In this article, we discuss methods to improve calibra
tion and validation of (probabilistic) RUL prediction models. We also 
propose a novel RUL model selection methodology based on consistency 
in extrapolation to normal conditions. 

The RUL prediction models are typically calibrated using accelerated 
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hydrostatic test data and least-squares regression. This model calibra
tion method provides deterministic model parameter values that mini
mize the sum of squares of the error between the accelerated test data 
and corresponding model predictions. It also provides standard devia
tion of the residual, which is assumed to be a zero-mean Gaussian 
random variable. Often the residual is neglected to obtain deterministic 
RUL prediction. However, even if the residual is considered (as recom
mended in ISO 9080 [4]), the assumption regarding normality and 
constant variance is difficult to justify for probabilistic RUL prediction. 
Bayesian inference-based model calibration, on the other hand, does not 
involve making these restrictive assumptions. In the Bayesian approach, 
the state of knowledge about the values of unknown parameters of in
terest is represented using prior and posterior probability distribution 
functions. The updated knowledge about a parameter (represented by 
the posterior distribution) is obtained by combining prior knowledge 
(based on intuition, experience, model prediction, prior data, etc.) and 
observations (test data). The observations are included in the Bayesian 
inference by computing the likelihood of observing the data for a given 
value of the parameter. In this work, we pursue the Bayesian inference 
approach for calibrating (probabilistic) RUL prediction models and 
evaluate its benefits over the least-squares approach recommended in 
ISO 9080. 

When multiple calibrated models are available, model validation and 
selection are critical for ensuring accurate predictions of the quantity of 
interest. Various engineering standards on testing of PE pipes (ISO [4], 
ASTM [5]) have correctly recognized the limitation of extrapolating the 
model to conditions different than those used for laboratory testing and 
calibration. They have recommended validation exercises, which rely on 
field data to qualitatively establish that extrapolation does not incur 
large errors. This is different from the quantitative model validation 
methods defined in classical verification and validation (V&V) literature 
[9–11]. The latter methods aim to quantify the degree to which a pre
dictive model is an accurate representation of the real world from the 
perspective of the intended use of the model [11]. For deterministic 
predictive models, simple metrics that quantify the error between the 
predicted and measured values (e.g., mean squared error (MSE), mean 
absolute error (MAE), root mean squared error (RMSE) etc.) could be 
used for ascertaining the model’s predictive accuracy. 

In general, predictive models can be classified into two categories: 
physics-based models (i.e., based on first principles); and regression- 
based models (based on fitting empirical data). For these two types of 
models, accuracy criteria (for both types of models) and additional 
model complexity criteria (for regression-based models) are typically 
employed for model evaluation and selection. While regression-based 
models containing a large number of parameters could improve pre
dictive performance because of the added complexity due to the higher 
number of model parameters, they also degrade the model performance 
for conditions different from the training data. Therefore, classical 
model selection methodologies for regression models consider the trade- 
off between model complexity (number of model parameters to be 
estimated) and goodness of fit [12,13]. These methods include the 
Akaike information criterion (AIC) [14], Bayesian information criterion 
(BIC) [15], Minimum description length (MDL) [16], etc. For quantita
tive validation of physics-based, probabilistic predictive models, clas
sical and Bayesian hypothesis testing-based metrics, and area and 
distance metrics for probabilistic comparison between prediction and 
observation [17] have been developed, taking into account the uncer
tainty in both model prediction and empirical observation. These met
rics are particularly suitable for physics-based models that result from 
different physics hypotheses (and not from the number of terms 
(complexity) as in regression models). Plastic pipe RUL prediction 
models are hybrid models, i.e., they utilize physics hypotheses to arrive 
at the composition of the model form and then use regression to fit the 
multiplicative model coefficients to the available test data. In this work, 
we compare various model validation metrics for such hybrid RUL 
prediction models built using accelerated hydrostatic test data. 

The main challenge to the credibility of probabilistic RUL prediction 
models for PE pipes is the unavailability of life data under normal 
operating conditions. As discussed above, the PE pipe RUL models could 
be validated using data obtained at accelerated hydrostatic test condi
tions, but these are very different from normal operating conditions. 
Thus the “intended use” part of the validation definition is not satisfied. 
In many applications, data under intended use conditions may not be 
available. Even if such data is available, multiple models could show 
similar validation performance and the task of selecting the best model 
(for intended use conditions) may not be trivial. 

In this work, we develop a novel, additional model selection criterion 
of prediction consistency when validation data corresponding to a model’s 
intended use condition is not available. We first recognize that there is 
uncertainty in the intended use (normal operating) conditions for which 
the predictive model will be used and represent this uncertainty using a 
probability distribution. For the pipe application considered in this 
paper, the probability distribution of the intended use condition may be 
based on data collected for temperatures and pressures for the pipe’s 
normal operating condition. Given this probability distribution, a 
reference operating condition (e.g., the expected value of the operating 
condition), and a probabilistic predictive model, we develop a four-step 
approach to evaluate the consistency of model prediction: (a) obtain the 
predicted RUL probability distribution at the reference operating con
ditions; (b) obtain the family of predicted RUL probability distributions 
corresponding to the probability distribution of the normal operating 
condition; (c) construct a probability distribution of the difference 
(distance) between the reference predicted RUL distribution and each 
member of the family of predicted RUL distributions; and (d) use mo
ments of this distance distribution to quantify the consistency of the RUL 
prediction model under normal operating condition. Model consistency 
is thus defined in this work as a measure of the consistency of the 
probabilistic model predictions for the assumed or known variability of 
intended use conditions. 

Thus, we propose a two-step strategy for model selection when 
empirical data are not available for the actual use condition: (i) vali
dation evaluation using test data, and (ii) consistency evaluation for the 
likely distribution of the actual use condition. The model has to be 
deemed satisfactory in both steps. If multiple competing models are 
available, only the models that show superior validation performance on 
the test condition data after the first step are considered further for 
consistency evaluation. Then in the second step, the most consistent 
model (among the models that pass the first step) is selected as the best 
prediction model. In this manner, the proposed model selection pro
cedure considers model performance in both test condition and intended 
use condition, and also includes uncertainty in both conditions as well as 
in model prediction. The novel contributions of this work are as follows:  

1. We develop a novel, model consistency criterion for model selection. 
The proposed two-step approach (validation with available data, 
plus consistency evaluation for the intended use condition) is well- 
suited for selecting the best model when validation data for the 
intended use condition is not available. This is a general methodo
logical contribution that is useful in many application domains.  

2. Specific to RUL prediction models for PE pipes, Bayesian inference is 
used for the first time in this paper to calibrate such models. We 
compare the Bayesian approach against the traditional least squares- 
based approach recommended in ISO 9080 and show that the 
Bayesian inference-based model calibration gives better validation 
performance, when accelerated hydrostatic test data is used for 
model validation.  

3. We compare the performance of various methods for validating 
probabilistic RUL prediction models for PE pipes. We show that the 
model reliability metric [13] is the most suitable metric to identify 
the best probabilistic RUL prediction model. 

In Section 2, we develop the proposed RUL model calibration, 
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validation, and selection methodology. In Section 3, we illustrate the 
proposed methodology for calibrating, validating, and selecting RUL 
prediction models for PE pipes, using publicly available accelerated 
hydrostatic test data. In Section 4, we provide concluding remarks and 
discuss future extensions of this work. 

2. Methodology 

In this Section, we first describe the available RUL prediction models 
for PE pipes in the literature. We then discuss the model calibration and 
validation methods in details. Finally, we discuss the proposed model 
selection methodology. 

2.1. PE pipe RUL models based on hydrostatic testing data 

Multiple RUL prediction model forms have been proposed for PE 
pipes in the literature. For predicting chemical degradation, most of the 
models use the rate process method (RPM) based on the Arrhenius 
equation. The Arrhenius equation implies that the logarithm of the rate 
of chemical degradation (chemical reaction) is a linear function of the 
reciprocal of the temperature. For mechanical degradation, various 
theories of mechanical failure have been used and relationships between 
RUL and hoop stress in the pipe have been derived. RUL prediction 
models thus consist of additive terms that account for chemical degra
dation (terms that depend only on temperature) and mechanical 
degradation (terms that depend only on hoop stress), and terms that 
account for the coupled action of the two phenomena (terms that depend 
both on temperature and hoop stress). All models considered in this 
paper predict the logarithm of RUL in hours. These models have either 
three or four additive terms and the same number of model parameters. 
A summary of the five candidate models considered in this work is given 
below:  

1. RPM model 

This model was developed by Coleman [18] using the rate process 
method (RPM) and the observed linear relationship between the loga
rithm of the hoop stress and the logarithm of the failure time. The 
three-parameter model is derived by combining the two relationships as 

ln(t) = A +
B
T
+

C ln(P)
T

, (1)  

where A, B, and C are model parameters to be estimated from the data, t 
is the remaining useful life (in hours), P is the hoop stress (in MPa), and T 
is the temperature (in degrees K). Note that many other RUL prediction 
models have been proposed based on the RPM [18], however the model 
in Eq. (1) is widely known as the RPM model.  

2. Norman Brown’s first model (NB1 model) 

This model was developed by Brown [19], and it assumes that 
semi-crystalline (PE) polymers contain crystallized areas, or so-called 
force centers. The force centers are bonded to each other by tie mole
cules. When mechanical stress is applied to the material, the chemical 
attraction (bond) force between the force centers and tie molecules is 
overcome, and the tie molecules are pulled out from the force center. A 
crack is initiated when a tie molecule is pulled out from the force center. 
The NB1 model calculates the rate of the pull-out process, and the RUL 
has a linear relationship with the pull-out rate. The model has the 
following form: 

ln(t) = A +
B
T
+

CP2

T
. (2)  

where A, B, and C are model parameters to be estimated from the data, 
and P, T and t have the same meaning and units as those in Equation (1).  

3. Norman Brown’s second model (NB2 model) 

This model was also developed by Brown [20], and it considers how 
the average molecule length influences the slow crack growth rate by 
postulating that the crack growth is caused by the disentanglement of 
the polymer material fibrils. The disentanglement rate depends on the 
number of tie molecules. The number of tie molecules is proportional to 
the size of the amorphous region (the region that contains tie mole
cules), and the area fraction of the amorphous region has a linear rela
tionship with the average molecule weight. We refer to this model as the 
NB2 model, and it is given by: 

ln(t) = A +
B
T
+ C ln(P). (3)  

where A, B, and C are model parameters to be estimated from the data, 
and P, T and t have the same meaning and units as those in Equation (1).  

4. Bragaw’s model (BG model) 

The fourth model was proposed by Bragaw [21], by comparing the 
performance of multiple model forms using least squares regression fit 
for PE pipe hydrostatic failure test data. Three candidate model forms 
were postulated, based on the RPM approach and by employing different 
terms consisting of logarithm of the temperature, logarithm of the hoop 
stress, or simply the hoop stress. The predictions from the three models 
were evaluated using the correlation coefficient (R) test and lack of fit 
(F) test. The most suitable model form was identified as: 

ln(t) = A +
B
T
+

CP
T

. (4)  

where A, B, and C are model parameters to be estimated from the data, 
and P, T and t have the same meaning and units as those in Equation (1).  

5. ISO model 

ISO 9080 [4] recommends a four-parameter model, which is a 
combination of the RPM method and the NB2 model. This model con
siders Arrhenius equation for degenerative chemical reaction (similar to 
RPM) and disentanglement of fibrils for slow crack growth (similar to 
NB2). The resulting four-parameter model is given by: 

ln(t) = A +
B
T
+ Cln(P) +

C ln(P)
T

(5)  

where A, B, and C are model parameters to be estimated from the data, 
and P, T and t have the same meaning and units as those in Equation (1). 

The next step is to estimate the parameters of these models using 
available hydrostatic test data. We discuss the two model calibration 
methods investigated in this article. 

2.2. Model calibration 

Consider models of the form 

y=g(x; θ), (6)  

Where y is the model output (the quantity to be predicted, e.g., y = ln (t)
in equation (5)), x is the vector of model inputs (e.g., x = [P,T]T in 
equation (5)), and θ is the vector of model parameters (e.g., θ =

[A B C D]T in equation (5)). Model calibration can be defined as finding a 
unique joint probability distribution of model parameters (θ) that pro
vides the best description of the system behavior and can be achieved by 
comparing model predictions against actual data (D) obtained from the 
system [22]. This data is in the form of observed/measured values of 
model outputs and the corresponding inputs, i.e., D = {yD

i , xD
i }, i=

1,2,…N. 
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2.2.1. Least squares (LS) model calibration 
Consider the model in Equation (6). When comparing model pre

diction to observation, we can write: 

yD = g
(
xD, θ

)
+ ε, (7)  

where ε is the residual between the model estimate g(xD, θ) and the 
observed value yD. To estimate the model parameters θ, we first define 
the sum of squares of errors (SSE) as: 

SSE(θ) = ε2 =
∑N

i=1

(
yD

i − g
(
xD

i , θ
))2

. (8) 

The least squares regression seeks to estimate the value of θ that 
minimizes SSE(θ), such that [22] 

∇θSSE(θ)= 0. (9) 

The optimal θ = θLS can be computed by solving equation (9). The 
residual (ε) is assumed to be a Gaussian random variable with zero mean 
and standard deviation equal to the square root of SSE(θLS). 

2.2.2. Bayesian inference (BI) for model calibration 
In Bayesian inference-based model calibration, the knowledge about 

the values of model parameters (θ) is represented using prior and pos
terior probability distribution functions. The updated knowledge (i.e., 
the posterior distribution) of model parameters is obtained by 
combining prior knowledge (based on intuition, experience, model 
prediction, prior data, etc.) and observed data. Specifically, the likeli
hood of observing the data for a given value of the parameter is 
computed, and the Bayesian inference for estimation of the model pa
rameters θ in Eq. (7) is given by: 

P(θ|D)∝L(θ)P(θ), (10) 

where the P(θ|D) is the posterior distribution, P(θ) is the prior dis
tribution, L(θ) is the likelihood function. The prior distribution is a 
distribution of θ based on prior information, and the likelihood function 
can be written generally as: 

L(θ)∝ΠN
i=1P

(
g
(
xD

i , θ
)
=yD

i

⃒
⃒θ
)
, (11)  

where g(xD
i , θ) is the model prediction with parameter θ and input data 

xD
i . The next step after estimating the model parameters is to validate the 

model using additional data, independent from the calibration dataset 
[23]. Model validation methods are discussed next. 

2.3. Model validation 

Several model validation methods and metrics for deterministic and 
stochastic models have been reported in the literature [11,24,25]. For 
deterministic models, the model validation methods focus on quanti
fying the error between the model prediction and the measured (vali
dation) data by computing metrics such as mean squared error (MSE), 
root mean squared error (RMSE), mean absolute error (MAE). These 
metrics are based on the distance between the model prediction and 
validation data; larger distance means lower accuracy and worse 
performance. 

Probabilistic model validation methods include classical hypothesis 
testing, Bayesian hypothesis testing, area metric method, and the model 
reliability method (distance metric). Classical hypothesis tests include 
Kolmogorov test, Hellinger distance and f-divergence. In general, these 
tests assume a null hypothesis (accept the model) and alternate hy
pothesis (reject the model). Standard procedure of statistical hypothesis 
testing is used to determine whether the null hypothesis can be rejected 
or not. The Kolmogorov test measures the difference in predictive and 
measured cumulative distribution functions (CDFs), and Hellinger dis
tance is the L2 norm of the difference between two distributions. The 
f -divergence is a generalized metric to measure the distance between 

two probability distributions. This function is based on the ratios be
tween the probability density function value of two distributions, and it 
is given by: 

Df (P‖Q) =

∫

Ω
q(x)f

(
p(x)
q(x)

)

dx, (12)  

where P and Q are the two distributions; p and q refer to probability 
density functions (PDFs), and Ω is the union of the supports of the two 
PDFs. The function f is chosen such that f(1)= 0, which ensures that the 
f-divergence is 0 if the two distributions are identical. A widely used 
choice for f , f = − log(x), gives the Kullback-Leibler divergence (KLD) as 
follows: 

DKL(P‖Q)= −

∫

Ω
q(x)log

(
p(x)
q(x)

)

dx (13) 

It is important to note that if the functions q(x) & p(x) have unequal 
support, then the KLD value will be infinity. So, the KLD cannot be used 
for distributions with different support. 

Bayesian hypothesis testing calculates the marginal likelihood ratio, 
known as Bayes factor [11], for the validation data. The Bayes factor is a 
ratio of the likelihood of observing the (validation) data with the null 
hypothesis (i.e., the probabilistic prediction of the model being evalu
ated) vs. the likelihood of observing the data with the alternate hy
pothesis (i.e., prediction without using the model being evaluated, e.g., 
range predicted by an expert), and higher likelihood ratio indicates a 
better model. The area-metric based model validation metric [26] takes 
the integral of the absolute difference between the PDFs of two distri
butions, which makes it sensitive to the mean and standard deviation of 
distributions as well as the entire distribution of the variables [27]. 

For probabilistic prediction models, the model output is a probability 
distribution, and the validation data is a set of point data. Bayes factor 
may be used to perform model selection in this setting, where Bayes 
factor is calculated as the ratio of data likelihood corresponding to two 
candidate models. Both KLD and Bayes factor can only reject or accept a 
model by comparing two models but cannot give the confidence level of 
the decision to reject or accept. The model reliability metric [11] mea
sures the probability that the difference between the model prediction 
and validation data is within a prescribed tolerance limit. If the vali
dation data point is yD and the tolerance limit is σ, then based on the 
probabilistic model prediction y, the model reliability can be computed 
as: 

R=P
(
(1 − σ) ∗ yD < y < (1 + σ) ∗ yD). (14) 

See Ref. [11] for a detailed discussion and comparison of the model 
validation methods mentioned in this section. All these methods focus 
on how the prediction of a particular model agrees with the observation. 
In the next section, we discuss how this information and an additional 
consideration may be used to select a particular model as the best model 
for a given engineering application. 

2.4. Model selection 

Model selection is concerned with choosing the best predictive 
model from a set of candidate models. The simplest form of model se
lection methodology relies on comparing validation metric values 
(Section 2.3) corresponding to the candidate models and selecting the 
model that exhibits the best validation metric value. This is validation 
metric-based model selection. However, although the model validation 
metrics consider the model prediction error, they do not consider model 
complexity, which is an important consideration for regression models 
based on empirical data. A model with higher complexity (i.e., with 
more parameters) may have a lower validation error, but it may require 
more calibration data and computational effort and may not perform 
well for model inputs different from the model training data. To find a 
balance between model complexity and model accuracy, several model 
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selection methods that consider model complexity have been proposed 
in the literature [14–16]. Three of them are discussed in Section 2.4.1. 

2.4.1. Complexity-based model selection method 
1. Akaike information criterion (AIC): 
Since a model rarely represents a real-world process exactly, the 

model calibration process almost always results in some information 
loss. The AIC metric measures the amount of information loss for each 
model. The AIC metric also has a model complexity-related penalty 
term, which is directly linked to the number of parameters in the model. 
The AIC metric is given by: 

AIC = nlog(SSE)+2p +
2p(p+1)
n − p− 1

(15)  

where SSE is the sum of squared error, p is the number of parameters, 
and n is the size of the dataset. Note that the AIC does not give an ab
solute measure of model performance but can be used as a relative 
measure in comparing one model to another. 

2. Bayesian information criterion (BIC) 
Similar to AIC, the BIC metric uses an additive penalty to account for 

model complexity. The BIC metric is computed as: 

BIC = n log(SSE)+p log(n) (16)  

In BIC, the model complexity penalty term is in terms of the logarithm of 
the number of samples. Due to this term, BIC is more sensitive to number 
of the parameters and less sensitive to number of the samples compared 
to AIC. 

3. Minimum description length (MDL) 
The MDL (minimum description length) casts the (regression) model 

selection problem as the problem of selecting the shortest-length descrip
tion of the training data. MDL considers the goodness of fit of the model as 
well as model complexity. Here, we employ the mixture form of the 
description length to define MDL [28]. MDL is defined for two cases, 
depending on data availability, as 

MDL = n log
(

SSE
n− p

)

+p log (F)+log (n)
(

if R2 >
p
n

)
, (case I)

MDL=n log
(

yT y
n

)

+ log(n) (case II),
(17)  

where R2 is the R-square value between the model prediction and vali
dation data, p is number of parameters in the model, F is the F-score of 
the model, n is the size of the dataset, and y is the model output vector. 
Sometimes the number of (observation) data points is too small 
compared to the number of parameters (i.e., p/n is too large), and the 
information contained in the dataset is unlikely to be able to support a 
correct estimate of the likelihood. In that case, the second metric (Case II 
in Eq. (17)) is designed to solve this problem. The AIC, BIC and Case I of 
MDL use the sum of squared errors (SSE) between the model predictions 
and the experimental values. Selecting one of the two cases in 
computing the MDL metric also requires experimental data. Without 
validation data, the three metrics cannot be computed, and model se
lection cannot be performed. Therefore, in the next Section, we develop 
a new model selection framework, aimed at alleviating this problem. 

2.4.2. Consistency-based model selection method 
As discussed above, if data corresponding to the normal operating 

conditions is not available, then model validation metrics-based model 
selection methods cannot be used. Even if data is available, several 
competing models may have similar values for the model validation and 
selection metrics, thus requiring an additional criterion to distinguish 
between them. Here, we propose that model selection can be aided by 
considering model consistency as the additional criterion. We define 
that a model is consistent if a small change in the input results in only a 
small change in the (probabilistic) model prediction (output). For model 

selection, the model consistency could be quantified for the probability 
distribution of normal operating conditions. 

Given a probabilistic prediction model and the probability distribu
tion of normal operating conditions (denoted by h(x)), the model con
sistency quantification requires (a) a reference operating condition, and 
(b) a metric of distance between the probabilistic model predictions at 
the reference operating condition and other probable operating condi
tions (obtained from the probability distribution of the normal operating 
conditions). The reference condition, denoted by xr, could be the mode 
or the mean value of the normal operating condition distribution. The 
predicted probability distribution of the output quantity of interest 
corresponding to the reference condition is obtained using the proba
bilistic prediction model and is denoted by f(yr), as: 

f (yr) = g(xr, θ), (18)  

where g(xr, θ) is the prediction of the calibrated probabilistic model, and 
θ is the vector of (calibrated) model parameters. For each sample of the 
normal operating condition 

(
xj
)
, obtained by sampling the distribution 

h(x), the probability distribution of the model output can be obtained as: 

f
(
yj
)
= g

(
xj, θ

)
. (19) 

We now need a metric to quantify the distance between two proba
bility distributions f(yr) and f(yi). Here, we use the Jensen-Shannon 
divergence (JSD) [29] as the metric of distance between two probabil
ity distributions. The JSD for two distributions (P and Q) is given by: 

JSD = JSD(P||Q) =
1
2

D(P||M) +
1
2

D(Q||M);M =
1
2
(P + Q), (20)  

where D(P‖Q) is the KLD defined in Equation (13). Note that unlike KLD, 
when distributions P and Q have different ranges, JSD does not become 
infinitely large. This is an important benefit of using JSD, when the 
probability distributions of the model output for some sample re
alizations of the normal operating condition may have different ranges 
than the probability distribution of the model output for the reference 
condition. To measure the similarity of the predictive distribution f(yj)

with the reference predictive distribution f(yr), the JSD value between 
these distributions is calculated as: 

JSDj = JSD
(
f
(
yj
)
‖f (yr)

)
. (21) 

Using Equation (21), JSDj values corresponding to each sample of the 
normal operating condition (xj) can be obtained. A lower value of JSDj 

implies stronger similarity between the probabilistic model predictions 
for xj and xr. This process is depicted in Fig. 1. 

The model consistency could be quantified by computing the mo
ments of the JSD distribution represented by the samples of JSDj. The 
JSD distribution effectively quantifies the spread of (probabilistic) 
model predictions over the probability distribution of the normal 
operating condition, and hence provides a meaningful model consis
tency metric. A lower mean value for the JSD distribution indicates more 
similarity between the model outputs for the reference distribution and 
samples of normal operating conditions, which implies more consistent 
model predictions. A lower variance of the 

JSD distribution indicates that a larger number of JSD values are 
closer to the mean value. Thus, the model that has the lowest mean value 
and standard deviation of the JSD distribution will be judged as the most 
consistent model. 

It is important to note that this procedure gives the model consis
tency assessment for a given reference value and for a given distribution 
of operating conditions. Model consistency-based rankings of different 
models may change if the reference condition or the distribution of 
operating conditions of interest are changed. Note that this model se
lection procedure correctly considers the probability distribution of the 
operating conditions of interest when selecting the most suitable model. 
When validation data corresponding to the operating conditions is not 
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available, this is a reasonable way to compare model performance and 
select the most suitable model. Also note that in the proposed two-step 
model selection process, the first step selects the models with the highest 
validation scores. Then in the second step, the consistency criterion is 
evaluated only for these chosen models; This ensures that the selected 
model is both accurate and consistent. The proposed two step procedure 
(first validation then consistency check) thus helps select the model that 
has a high validation score and the best predictive consistency. 

3. Numerical implementation and results 

To illustrate the proposed model calibration, validation, and selec
tion methodology, we use two publicly available datasets. 

3.1. Example 1 

In the first example, we use a PE pipe accelerated failure test dataset 
(referred to as Dataset I) from the Chevron Phillips Chemical Company 
[30], a well-known polymer manufacturer. That dataset was developed 
to investigate the relationship between failure stress and failure time of 
the PE pipes used to protect electric wires/cables. 

3.1.1. Accelerated testing data for model calibration 
The pipes are subjected to a certain hoop stress and testing temper

ature, and failure is defined as continuous pressure loss for the gas inside 
the pipe, which indicates a crack on the pipe wall. Eighteen data points 
from the accelerated testing dataset are divided into two parts: 12 data 
points for model calibration and 6 data points for validation (see Fig. 2). 

In the numerical example, this dataset is employed to calibrate five 
different probabilistic RUL prediction models using the two methods 
(least-squares regression and Bayesian inference) described in Section 
2.1. Several model validation and model selection metrics are used to 
compare the predictive performance of five models and to demonstrate 
the utility of the proposed model selection methodology. 

3.1.2. Model calibration 

3.1.2.1. Least squares regression. The least square linear regression 
method described in Section 2.2.1 is first used to calibrate the five 
models given in Section 2.1, using the NumPy Python library. Table 1 
gives the parameter estimates. 

3.1.2.2. Bayesian calibration. The prior distribution of model parame
ters represents the prior knowledge based on intuition, experience, 
model prediction, prior data, etc. Here, we use an approximate meth
odology to obtain the lower and upper bounds of independent marginal 

uniform prior distributions of the parameters. The methodology in
volves solving numerous linear systems of equations using hydrostatic 
test data to obtain initial (upper and lower) bounds. The upper/lower 
bounds obtained by this approximate method are increased/decreased 
by 10 % (or more, if desired) to account for any errors in the approxi
mate methodology. Note that we use an unbiased (uniform) distribution 
as the prior distribution and bounds of these distributions merely 
represent the possible highest and lowest values of model parameters. 
The modified upper and lower bounds of uniform prior distributions of 
different model parameters are given in Table 2. For a calibration 
dataset with more than one data point, the data is assumed to be sta
tistically independent. The overall likelihood of N data points is thus 
computed by multiplying their individual likelihoods given the candi
date values of model parameters. 

We use Markov Chain Monte Carlo (MCMC) sampling (Metropolis 

Fig. 1. Computation of the distribution of JSD.  

Fig. 2. Accelerated hydrostatic test PE pipe failure data.  

Table 1 
Parameter estimates using least squares.  

Method name A B C D Std. dev. of ε 

RPM − 37 16620 − 1149 – 0.73 
NB1 − 35 14796 − 138 – 0.86 
NB2 − 33 14590 − 6 – 0.73 
BG − 37 16602 − 194 – 0.78 
ISO − 5 6002 − 20 4028 1.10  
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algorithm) [31] to obtain samples from the posterior distribution. In 
MCMC, the burn-in technique is commonly used [32], in which samples 
at the beginning of the Markov chain are discarded and the remaining 
samples are used to approximate the posterior distribution [33]. Dis
carding the initial part of the chain can negate the influence of the start 
point’s location and make the posterior distribution more stable. The 
number of discarded samples, or the burn-in ratio, needs to be decided to 
obtain a good approximation of the posterior distribution. In this article, 
we use the Kullback–Leibler divergence (KLD, Equation (13)) to decide 
the burn-in ratio. Specifically, KLD is used to quantify the difference 
between two (approximate) posterior distributions with different 
burn-in ratios (initial λ% samples). The posterior obtained using the last 
Γ% of the original Markov chain is taken as the reference distribution for 
computing KLD. The first λ% samples are removed and KLD between the 
remaining part of the original Markov chain and the reference distri
bution is computed. This is repeated for different λ values to find the 
relationship between λ and the KLD value. It is found that λ= 70 pro
vides a good match with the reference distribution, hence this value of λ 
is chosen as the burn-in ratio. After rejecting (burning-in) the initial 70 
% samples from the Markov chain, the final Markov chain is generated. 
The final Markov chain contains Monte Carlo samples drawn from the 
posterior distribution of all parameters. Based on the samples, the dis
tribution of parameters is generated. These posterior distributions are 
depicted in Fig. 3. 

Note that in the prior distribution, the model parameters are 
assumed to be independent, while in the posterior distribution, the 
model parameters are correlated as expected. The correlations of the 
model parameters, based on the posterior distribution, are shown in 
Fig. 4. For four three-parameter models, the highest correlation co
efficients among the model parameters are close to 1. This suggests that 
those parameters are highly correlated with each other. For the ISO 
model, the correlation is different: the absolute value of correlation 
coefficients between parameters A and C as well as parameters A and D 
are less than 0.5. In general, the model parameters in three-parameter 
models have higher correlation among themselves than the parame
ters in ISO model. This difference may be because the ISO model has four 
parameters; as we estimate more parameters from the same amount of 
data, the correlation gets more diffused. 

Next, we compare the prior and posterior distributions of the RUL 
obtained using the Bayesian model calibration described in Section 2.2. 
For comparing probabilistic RUL predictions, we assume room temper
ature (293 K) and atmospheric pressure (0.1 MPa) as the operating 
conditions. Under these normal operating conditions, the RUL with the 
five probabilistic models is shown in Fig. 5. 

The mean and median values of the prior and posterior distributions 
are close to each other. In contrast, the posterior distribution’s variance 
is smaller than the prior distribution, indicating that significant uncer
tainty reduction is achieved due to model calibration. The posterior RUL 
distribution for the RPM model is similar to that of the FT model, and the 
posterior RUL estimates by the NB1 and BG models show similar 
behavior. 

We also provide comparison of Bayesian inference (BI) and least 
squares (LS) in Fig. 6; in particular, we compare ln (RUL) as predicted by 
the five models calibrated using the two methods, at 293 K and 0.1 MPa. 
Models calibrated using these two methods predict different mean 

values, and models calibrated using the LS method have smaller vari
ance. However, graphical comparison of posterior PDFs is not adequate 
to assess the prediction quality resulting from the two methods. In the 
next Section we report on the validation metrics for the models trained 
using these two metrics. 

3.1.3. Model validation 
Four metrics (AIC, BIC, MDL, and model reliability) are computed for 

the five models, and two calibration methods result in ten different as
sessments of performance. The tolerance for computing the model reli
ability metric is set to be 10 % of the experimental value. The validation 
metrics computed for the five models (each calibrated using LS and BI) 
using the validation dataset are given in Table 3. 

The AIC and BIC values of the ISO model are much higher than those 
of the other four models (note: lower the better), because this model is 
penalized for higher complexity (i.e., one additional parameter) 
compared to the other models. Hence, we discard this model during 
model selection. The remaining four three-parameter models have very 
similar values of AIC, BIC and MDL; further, they have the same number 
of parameters (i.e., same model complexity). Thus, model selection 
using the information theory-based metrics AIC, BIC, and MDL values is 
not successful. 

As shown in Table 3, the model reliability of the four models cali
brated using BI is higher than the models calibrated using LS, which 
indicates that relaxing the assumptions about normality and constant 
variance of the probabilistic predictive model (the residual used in LS) 
helps improving the model’s predictive ability. But the reliability metric 
values of the four models under accelerated test condition are similar to 
each other; hence the best model cannot be selected solely based on 
model reliability metric values. As validation data under normal oper
ating conditions is unavailable, model reliability assessment under 
normal operating conditions is not possible, and thus cannot be used in 
model selection. Thus, using the validation metric to select a model is 
also not successful in this case. Hence, consistency-based model selec
tion metric is explored next, to find out whether it can help select the 
best model. 

3.1.4. Consistency-based model selection 
In this section we demonstrate the proposed model selection meth

odology that utilizes accuracy in accelerated test conditions as well as 
consistency in intended use conditions. In Section 3.3, we showed that 
the AIC, BIC MDL metrics for all four candidate methods have similar 
values, therefore it is not possible to select the best model using these 
metrics. We also found that, under accelerated test conditions, the 
highest model reliability is 0.63 (for the NB1(BI) model). We set the 
accuracy requirement to be 90 % of highest reliability (accuracy) among 
the candidate models (0.57). This results in rejection of two models 
(NB1 (LS) and BG (LS)) as their accuracy is lower than the. Note that the 
90 % reliability threshold is a tunable screening parameter, and it 
merely ensures that poorly performing models are removed from con
sistency considerations. Any other suitable model reliability threshold 
could be chosen. The consistency-based model evaluation is performed 
for the selected models that show good predictive ability in accelerated 
test conditions. 

The first step of the proposed consistency-based method for model 

Table 2 
Prior distribution bounds.  

Method name A B C D  

Lower Upper Lower Upper Lower Upper Lower Upper 
RPM − 58 − 30 13567 25039 − 2084 − 402 – – 
NB1 − 47 − 26 11018 18285 − 13 − 3 – – 
NB2 − 48 − 26 12217 21805 − 7 − 1 – – 
BG − 51 − 28 12072 20706 − 221 − 64 – – 
ISO − 40 30 − 5000 20000 − 20 − 3 500 5500  
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Fig. 3. Prior and posterior distributions of model parameters.  
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Fig. 4. Correlation coefficient matrices for calibrated model parameters (posterior distributions).  
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Fig. 5. Prior and posterior distributions of RUL for T = 293K, P = 0.1 MPa.  
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selection is to choose the reference input and the input distribution. In 
this case, the model input is the normal operating condition, while the 
output is RUL. Two different operating conditions are considered in the 
JSD distribution process. The first operating condition (OC1) has a 
reference temperature of 293 K (20 ◦C) and a reference hoop stress of 10 
MPa, which mimics the conditions for a main pipeline in an under
ground pipe network. The temperature is set to be uniformly distributed 
from 291K to 295K. The hoop stress is lognormally distributed with a 
mean value of 10 MPa and 20 % coefficient of variation (COV). The 
samples drawn from this distribution of the operating condition are 
shown in Fig. 7. 

Using this distribution of normal operating condition, the JSD dis
tribution is obtained using the procedure described in Section 2.4.1. The 
distributions of the JSD values of the six models that passed the accuracy 
requirement are given in Fig. 8(a). In Fig. 8(a) RPM (BI) is the most 

Fig. 6. Comparison of models calibrated using LS and BI for T = 293 K, P = 0.1 MPa.  

Table 3 
Model validation metrics for models calibrated using LS and BI.  

Model AIC BIC MDL Model reliability 

RPM (LS) 19.31 6.68 5.85 0.57 
NB1 (LS) 18.73 6.11 5.95 0.46 
NB2 (LS) 19.27 6.65 5.86 0.58 
BG (LS) 19.20 6.58 5.90 0.52 
ISO (LS) 50 9.16 5.90 0.41 
RPM (BI) 19.3 6.67 5.90 0.59 
NB1 (BI) 18.94 6.31 5.91 0.63 
NB2 (BI) 19.28 6.65 5.91 0.61 
BG (BI) 19.04 6.41 5.90 0.62 
ISO (BI) 49.10 8.27 5.90 0.53  
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consistent model. Its predictive consistency over the intended use con
dition OC1 is illustrated in Fig. 8(b), where the families of predictive 
distributions for RPM(BI) and NB2(LS) models are depicted. It can be 
seen in Fig. 8(b) that the family of RPM(BI) predictive distributions 
provides more consistent predictions compared to that of NB2(LS). 

Another operating condition (OC2) with lower hoop stress is 
considered next. The temperature is set to be uniformly distributed from 
291K to 295K, and the hoop stress is modeled using lognormal distri
bution with mean value of 0.1 MPa and 20 % COV. The reference 
temperature is 293 K, and the reference pressure is taken as 0.1 MPa. 
These conditions mimic operating conditions for a pipe that is not used 
for liquid transfer but for protecting wires, etc. Also, this is the lowest 
possible working stress for a pipe. The samples drawn from the distri
bution of the operating condition OC2 are shown in Fig. 9. The JSD 
distributions under this operating for candidate models that passed the 
accuracy requirement are depicted in Fig. 10(a). In Fig. 10(a) BG (BI) is 
the most consistent model. Its predictive consistency over the intended 
use condition OC2 is illustrated in Fig. 10(b), where the families of 
predictive distributions for BG(BI) and NB2(LS) models are depicted. It 
can be seen in Fig. 10(b) that the family of BG(BI) predictive distribu
tions provides more consistent predictions compared to that of NB2(LS). 

The first two moments of the JSD distributions for the two operating 
conditions (OC1 and OC2) are given in Table 4. For OC1, the RPM (BI) 
model has the lowest mean value and standard deviation of JSD, thus 
indicating that the RPM (BI) model is more consistent than any other 
method. For OC2, the results are different. The BG(BI) model has the 

lowest mean value and standard deviation of JSD; hence for this oper
ating condition, the BG (BI) model gives the most consistent prediction 
of RUL. Figs. 8 and 10 show that RUL distribution families corre
sponding to lower JSD values exhibit consistent predictive distributions 
and vice versa. For example, for normal operating condition (OC2, 
Fig. 10(b)), the mean RUL value for the high JSD case (NB2(LS)) varies 
between roughly e28 (1012) and e33 (1015) hours. This is a very large 
range for the mean RUL prediction. Whereas for the low JSD case (BG 
(BI)), the mean RUL value is always about e17 (107) hours. Also note that 
the most consistent methods are different at the same temperature with 
different hoop stress. This difference suggests that the best model under 
the consistency criterion can be different with different operating 
conditions. 

Two important properties of the proposed model selection method 
are demonstrated by the numerical example. First, this method does not 
select a single model from the candidate models for all model inputs. A 
different model is indicated as the most consistent model for different 
normal operating conditions; therefore the model selection should be 
repeated when the intended use conditions change. Secondly, in the 
numerical example, validation data is not used in the consistency-based 
model selection. This is the main advantage of the consistency-based 
model selection: unlike the validation metric-based and the 
information-theoretic methods, the consistency-based method does not 

Fig. 7. Samples drawn from the probability distribution of high-stress and low- 
temperature operating condition (OC1). 

Fig. 8. JSD distributions and families of RUL distributions for OC1.  

Fig. 9. Samples drawn from the probability distribution of low-stress and low- 
temperature operating condition (OC2). 
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require validation data; thus, it is useful when no validation data is 
available (as in this case where RUL data for PE pipes under normal 
operating conditions is not available). 

3.2. Example 2 

In this example, we use a dataset from the Plastic Pipe Institute 
(referred to as Dataset II) for predicting the RUL for a typical natural gas 
delivery pipe using accelerated failure test data [34]. 

3.2.1. Accelerated test data 
The dataset contains 15 accelerated aging test results for two tem

perature and three pressure (hoop stress) values, as shown in Fig. 11. We 
use 9 data points as Calibration dataset, and 6 datapoints as validation 
dataset. 

3.2.2. Model calibration 
All models described in Section 2.1 are calibrated with this dataset 

and two methods (least-squares regression and Bayesian inference). The 
model parameters estimated using least-squares regression are shown in 
Table 5. 

For Bayesian inference, the lower and upper bounds of the prior 
distributions are computed using the method described in Section 3.1.2. 
The prior distributions and the posterior distributions obtained using 
Bayesian inference are shown in Fig. 12. 

The prior and posterior distributions of the LN(RUL), obtained using 
the model parameters given in Fig. 12, are shown in Fig. 13. 

3.2.3. Model validation 
After model calibration, we use the test dataset and four metrics 

mentioned in Section 2.1 to compare the accuracy and complexity of the 
different models. The tolerance for computing the model reliability 
metric is set to be 10 % of the experimental value. The validation metrics 
computed for five models and two calibration methods are given in 
Table 6. 

From Table 6, we notice that the ISO model exhibits very high AIC, 
BIC and MDL scores, hence we discard the ISO model from the model 
selection procedure. Both NB1 and BG model (for both calibration 
methods) have a relatively high BIC and MDL value, and the NB1 model 
(for both calibration methods) has reliability lower than 0.6. These 
models are also discarded. The remaining two models, RPM and NB2, 
have similar performance for all validation metrics; hence we need to 
perform consistency-based model selection among these two models. 

3.2.4. Consistency-based model selection 
For consistency-based model selection, we use the same reference 

input and input distribution as in Section 3.1. The predictive consistency 
of the models under two different operating conditions (OC1 and OC2) is 

Fig. 10. JSD distributions and families of RUL distributions for OC2.  

Table 4 
JSD distribution parameters for different models and operating conditions.  

Model Mean Std. dev Mean Std.dev 

OC1 (P = 10 MPa) OC2 (P = 0.1 MPa) 

RPM (BI) 0.092 0.061 0.036 0.025 
NB1 (BI) 0.124 0.074 0.028 0.016 
NB2 (BI) 0.098 0.064 0.030 0.021 
BG (BI) 0.111 0.071 0.023 0.013 
RPM (LS) 0.144 0.088 0.141 0.087 
NB2 (LS) 0.189 0.116 0.187 0.116  

Fig. 11. PE pipe failure data from accelerated hydrostatic tests (Dataset II).  

Table 5 
Parameter estimates using least squares.  

Method name A B C D Std. dev. of ε 

RPM − 34 14670 − 1104 – 0.40 
NB1 − 29 12602 − 73 – 0.45 
NB2 − 31 13541 − 3 – 0.44 
BG − 31 13897 − 429 – 0.33 
ISO − 53 21448 20 − 7886 0.43  
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Fig. 12. Prior and posterior distributions of model parameters.  
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given by the JSD distributions, which are shown in Figs. 14 and 15. 
The numerical model consistency results (i.e., JSD distribution pa

rameters) are shown in Table 7. 
For OC1, the RPM(BI) model has the lowest JSD mean and standard 

deviation, hence it is a more consistent predictor of RUL than the other 
models. The RPM(BI) model should thus be chosen as the RUL prediction 
model in this operating condition. However, for OC2, the lowest JSD 
mean and standard deviation corresponds to the NB2(BI) model, hence it 
is the most consistent model among all candidate models and should be 
chosen for RUL prediction in this operating condition. 

The model calibration and selection process for Dataset II (Example 
2) corroborates the key finding from Example 1, that the best model is 
different for OC1 and OC2. This further reinforces the conclusion from 
Dataset I that the most consistent model depends on the expected use 

Fig. 13. Prior and posterior distributions of RUL for T = 293K, P = 0.1 MPa.  

Table 6 
Model validation metrics for models calibrated using LS and BI (Dataset II).  

Model AIC BIC MDL Model reliability 

RPM (LS) 28.94 3.76 5.52 0.76 
NB1 (LS) 30.65 5.48 9.82 0.52 
NB2 (LS) 28.76 3.59 5.08 0.74 
BG (LS) 30.07 4.90 8.37 0.67 
ISO (LS) 47.92 7.09 8.90 0.63 
RPM (BI) 28.48 3.31 4.40 0.66 
NB1 (BI) 30.52 5.35 9.50 0.53 
NB2 (BI) 28.91 3.74 5.48 0.65 
BG (BI) 29.95 4.78 8.08 0.64 
ISO (BI) 48.05 7.21 9.26 0.55  
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conditions. We have thus shown that the proposed consistency-based 
model selection can be used for different PE pipeline systems with 
different applications (Datasets I and II). In Section 3.1, we considered 
PE pipes for cable and wire protection, whereas in Section 3.2 we 
considered gas/liquid transfer pipes. 

4. Conclusion 

This article presented a framework for probabilistic model calibra
tion, validation and selection for the RUL prediction of PE pipes, using 
accelerated hydrostatic test data. To the best of our knowledge, this is 
the first time that Bayesian inference and the model reliability metric 
have been used to calibrate and validate RUL models for PE pipes. The 
utility of Bayesian inference for calibrating RUL prediction models is 
established by comparing against the performance of models calibrated 
using least squares. The ability of the model reliability metric to identify 
the best RUL prediction model using validation data from accelerated 
failure tests is demonstrated. Finally, a model consistency-based model 
selection metric is developed and used to select the best RUL prediction 

model for PE pipes. The proposed consistency metric is useful when 
validation data for RUL under normal operating condition is not avail
able. Model consistency is evaluated using the Jenson-Shannon diver
gence between model predictions, given the probability distribution of 
normal operating conditions. The utility of the proposed two-step model 
selection approach (first validation, then consistency check) is demon
strated using five PE pipe RUL prediction models and publicly available 
accelerated PE pipe failure test data. 

Note that the most consistent model is different for different oper
ating conditions. Since the real-world pipeline system may have to 
function adequately under multiple conditions, the operator must repeat 
the proposed model selection procedure over a range of possible oper
ating conditions. An aggregated model consistency score may then be 
evaluated for different models and then the appropriate model could be 
selected. 

The proposed methodology cannot guarantee model accuracy under 
the operating condition. Step II (validation) of the method does consider 
model accuracy, but w.r.t. the validation dataset (under accelerated test 
conditions). Step III (consistency-based model selection) of the proposed 
method only considers the model consistency of the candidate models, 
but not model accuracy. If a model has high accuracy for accelerated test 
conditions but low accuracy for the operation condition, this model may 
still get selected using the proposed method. Unless real-world test data 
is available, model performance evaluation under operating condition is 
a difficult task. However, the proposed methodology offers an initial 
model selection procedure when there is no data under operating con
dition. The chosen model could then be updated based on available 
operating data. 

Compared to previously developed model selection methods, the 

Fig. 14. JSD distributions and families of RUL distributions for OC1.  

Fig. 15. JSD distributions and families of RUL distributions for OC2.  

Table 7 
JSD distribution parameters for different models and operating conditions.  

Model Mean Std. dev Mean Std. dev 

OC1 (P = 10 MPa) OC2 (P = 0.1 MPa) 

RPM (BI) 0.062 0.044 0.050 0.037 
NB2 (BI) 0.066 0.047 0.048 0.023 
RPM (LS) 0.203 0.121 0.204 0.122 
NB2 (LS) 0.179 0.112 0.180 0.112  
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proposed approach combining Bayesian calibration, model reliability 
metric, and the consistency criterion is found to be effective in RUL 
model selection. Unavailability of calibration/validation data under 
normal operating conditions is a common problem in many engineering 
applications. The proposed methodology provides a viable recourse for 
model selection when empirical data under normal operating conditions 
is not available. 

CRediT authorship contribution statement 

Dongjin Du: Conceptualization, Investigation, Methodology, Soft
ware, Visualization, Writing - original draft. Pranav Karve: Conceptu
alization, Methodology, Validation, Writing - review & editing. 
Sankaran Mahadevan: Conceptualization, Funding acquisition, Project 
administration, Resources, Supervision, Validation, Writing - review & 
editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This research was funded by the U.S. Department of Transportation 
(PHMSA Project No. 693JK32050006CAAP, Project Monitor: Zhong
quan Zhu, PI: Prof. Jinying Zhu at the University of Nebraska-Lincoln). 
The support is gratefully acknowledged. 

References 

[1] Plastic Pipe Data Collection Initiative Status Report August 2019, Plastic Pipe 
Database Committee, 2019. 

[2] J.R. White, Polymer ageing: physics, chemistry, or engineering? Time to reflect, 
Compt. Rendus Chem. 9 (11–12) (2005) 1396–1408, https://doi.org/10.1016/j. 
crci.2006.07.008. 

[3] G. Pinter, R.W. Lang, Effect of stabilization on creep crack growth in high-density 
polyethylene, Appl. Polym. Sci. 90 (2003) 3191–3207, https://doi.org/10.1002/ 
app.12944. 

[4] International Organization for Standardization, ISO 9080: Plastics Piping and 
Ducting Systems — Determination of the Long-Term Hydrostatic Strength of 
Thermoplastics Materials in Pipe Form by Extrapolation, 2012. Retrieved from:iso. 
org/standard/43860.html. 

[5] American Society for Testing and Materials, Basis for Thermoplastic Pipe Materials 
or Hoop Stress Design Basis for Thermoplastic Pipe Products, ASTM International, 
West Conshohocken, PA, 2021, https://doi.org/10.1520/D2837-21. ASTM D2837- 
21: Standard Test Method for Obtaining Hydrostatic Design. 

[6] S. Zha, H.Q. Lan, H. Huang, Review on lifetime predictions of polyethylene pipes: 
limitations and trends, Int. J. Pres. Ves. Pip. 198 (102663) (2022), https://doi.org/ 
10.1016/j.ijpvp.2022.104663. 

[7] B.H. Choi, Z. Zhou, A. Chudnovsky, S.S. Stivala, K. Sehanobish, C.P. Bosnyak, 
Fracture initiation associated with chemical degradation: observation and 
modeling, Int. J. Solid Struct. 42 (2) (2005) 681–695, https://doi.org/10.1016/j. 
ijsolstr.2004.06.028. 

[8] M.R. Contino, L. Andena, Environmental stress cracking of high-density 
polyethylene under plane stress conditions, Eng. Fract. Mech. 241 (2021), 107422, 
https://doi.org/10.1016/j.engfracmech.2020.107422. 

[9] American Institute of Aeronautics and Astronautics, AIAA-G-077-1998: AIAA 
Guide for the Verification and Validation of Computational Fluid Dynamics 
Simulations, 1998, https://doi.org/10.2514/4.472855.001. Reston, vol. A. 

[10] American Society of Mechanical Engineers, ASME Standard V&V 10-2006: Guide 
for Verification and Validation in Computational Solid Mechanics, 2006. New 
York, NY. Retrieved from, https://www.asme.org/codes-standards/find-codes-sta 
ndards/v-v-10-standard-verification-validation-computational-solid-mechanics. 

[11] Y. Ling, S. Mahadevan, Quantitative model validation techniques: new insights, 
Reliab. Eng. Syst. Saf. 111 (2013) 217–231, https://doi.org/10.1016/j. 
ress.2012.11.011. 

[12] I.J. Myung, The importance of complexity in model selection, J. Math. Psychol. 44 
(1) (2000) 190–204, https://doi.org/10.1006/jmps.1999.1283. 

[13] V. Hombal, S. Mahadevan, Model selection among physics-based models, J. Mech. 
Des. 135 (2013), 021003, https://doi.org/10.1115/1.4023155. 

[14] H. Akaike, Information Theory and an Extension of the Maximum Likelihood 
Principle, 2nd International Symposium on Information Theory, Akademiai Kiado, 
1973. 

[15] G.E. Schwarz, Estimating the dimension of a model, Ann. Stat. 6 (2) (1978) 
461–464. 

[16] J. Rissanen, Modeling by shortest data description, Automatica 14 (5) (1977) 
465–471, https://doi.org/10.1016/0005-1098(78)90005-5. 

[17] R. Rebba, S. Mahadevan, Computational methods for model reliability assessment, 
Reliab. Eng. Syst. Saf. 93 (8) (2018) 1197–1207, https://doi.org/10.1016/j. 
ress.2007.08.001. 

[18] B.D. Coleman, Application of the theory of absolute reaction rates to the creep 
failure of polymeric filaments, J. Polym. Sci. 20 (1956) 447–455, https://doi.org/ 
10.1002/pol.1956.120209604. 

[19] N. Brown, Fundamental mechanism of slow crack growth in semi-crystalline 
polymers under a constant load, Mater. Sci. Appl. 10 (2019) 721–731, https://doi. 
org/10.4236/msa.2019.1011052. 

[20] N. Brown, Y.L. Huang, The effect of molecular weight on slow crack growth in 
linear polyethylene homopolymers, J. Mater. Sci. 23 (1988) 3648–3655, https:// 
doi.org/10.1007/BF00540508. 

[21] C. Bragaw, The Forecast of Polyethylene Pipe and Fitting Burst Life Using Rate 
Process Theory, Plastic Pipes Conference Association, York, 1982. 

[22] A. Haldar, S. Mahadevan, Probability, Reliability, and Statistical Methods in 
Engineering Design, John Wiley & Sons, Inc, 1999. 

[23] L.A. Kerr, D.R. Goethel, Stock Identification Methods, second ed., Academic Press, 
2014, pp. 501–533, https://doi.org/10.1016/B978-0-12-397003-9.00021-7. 

[24] S. Riedmaier, B. Danquah, B. Schick, F. Diermeyer, Unified framework and survey 
for model verification, validation and uncertainty quantification, Arch. Comput. 
Methods Eng. (2020) 1–34, https://doi.org/10.1016/j.ress.2012.11.011. 

[25] P. Gardner, C. Lord, R.J. Barthorpe, An evaluation of validation metrics for 
probabilistic model outputs, in: In Verification and Validation, 2018, 4079 
(V001T06A001), 1-34. 

[26] S. Ferson, W.L. Oberkampf, L. Ginzburg, Model validation and predictive capability 
for the thermal challenge problem, Comput. Methods Appl. Mech. Eng. 197 
(29–32) (2008) 2408–2430, https://doi.org/10.1016/j.cma.2007.07.030. 

[27] D. Wu, Z. Wu, Y.W. Lu, C. Lei, Model validation and calibration based on 
component functions of model output, Reliab. Eng. Syst. Saf. 140 (2015) 59–70, 
https://doi.org/10.1016/j.ress.2015.03.024. 

[28] M. Hansen, B. Yu, Model selection and the principle of minimum description 
length, J. Am. Stat. Assoc. 96 (454) (2001) 746–774, https://doi.org/10.1198/ 
016214501753168398. 

[29] D.M. Endres, &J.E. Schindelin, A new metric for probability distributions, IEEE 
Trans. Inf. Theor. 49 (7) (2003) 1858–1860, https://doi.org/10.1109/ 
TIT.2003.813506. 

[30] K. Krishnaswamy, R. Sukhadia M, A. Lamborn, M. J, IS PENT A TRUE INDICATOR 
OF PE PIPE SLOW CRACK GROWTH RESISTANCE ? Chevron Phillips Chemical 
Company, 2017. 

[31] N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equations 
of state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953) 
1087–1092, https://doi.org/10.1063/1.1699114. 

[32] K. Kengo, Stability of Markov Chain Monte Carlo Methods, first ed., Springer 
Tokyo, 2023. 

[33] J.K. Kruschke, Doing Bayesian Data Analysis, second ed., Elsevier Inc, 2015. 
[34] Rate Process Method for Projecting Performance of Polyethylene Piping 

Components, Plastic Pipe Institute, 2008. 

D. Du et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S0308-0161(23)00225-9/sref1
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref1
https://doi.org/10.1016/j.crci.2006.07.008
https://doi.org/10.1016/j.crci.2006.07.008
https://doi.org/10.1002/app.12944
https://doi.org/10.1002/app.12944
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref4
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref4
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref4
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref4
https://doi.org/10.1520/D2837-21
https://doi.org/10.1016/j.ijpvp.2022.104663
https://doi.org/10.1016/j.ijpvp.2022.104663
https://doi.org/10.1016/j.ijsolstr.2004.06.028
https://doi.org/10.1016/j.ijsolstr.2004.06.028
https://doi.org/10.1016/j.engfracmech.2020.107422
https://doi.org/10.2514/4.472855.001
https://www.asme.org/codes-standards/find-codes-standards/v-v-10-standard-verification-validation-computational-solid-mechanics
https://www.asme.org/codes-standards/find-codes-standards/v-v-10-standard-verification-validation-computational-solid-mechanics
https://doi.org/10.1016/j.ress.2012.11.011
https://doi.org/10.1016/j.ress.2012.11.011
https://doi.org/10.1006/jmps.1999.1283
https://doi.org/10.1115/1.4023155
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref14
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref14
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref14
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref15
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref15
https://doi.org/10.1016/0005-1098(78)90005-5
https://doi.org/10.1016/j.ress.2007.08.001
https://doi.org/10.1016/j.ress.2007.08.001
https://doi.org/10.1002/pol.1956.120209604
https://doi.org/10.1002/pol.1956.120209604
https://doi.org/10.4236/msa.2019.1011052
https://doi.org/10.4236/msa.2019.1011052
https://doi.org/10.1007/BF00540508
https://doi.org/10.1007/BF00540508
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref21
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref21
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref22
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref22
https://doi.org/10.1016/B978-0-12-397003-9.00021-7
https://doi.org/10.1016/j.ress.2012.11.011
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref25
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref25
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref25
https://doi.org/10.1016/j.cma.2007.07.030
https://doi.org/10.1016/j.ress.2015.03.024
https://doi.org/10.1198/016214501753168398
https://doi.org/10.1198/016214501753168398
https://doi.org/10.1109/TIT.2003.813506
https://doi.org/10.1109/TIT.2003.813506
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref30
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref30
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref30
https://doi.org/10.1063/1.1699114
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref32
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref32
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref33
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref34
http://refhub.elsevier.com/S0308-0161(23)00225-9/sref34

	Calibration, validation, and selection of hydrostatic testing-based remaining useful life prediction models for polyethylen ...
	1 Introduction
	2 Methodology
	2.1 PE pipe RUL models based on hydrostatic testing data
	2.2 Model calibration
	2.2.1 Least squares (LS) model calibration
	2.2.2 Bayesian inference (BI) for model calibration

	2.3 Model validation
	2.4 Model selection
	2.4.1 Complexity-based model selection method
	2.4.2 Consistency-based model selection method


	3 Numerical implementation and results
	3.1 Example 1
	3.1.1 Accelerated testing data for model calibration
	3.1.2 Model calibration
	3.1.2.1 Least squares regression
	3.1.2.2 Bayesian calibration

	3.1.3 Model validation
	3.1.4 Consistency-based model selection

	3.2 Example 2
	3.2.1 Accelerated test data
	3.2.2 Model calibration
	3.2.3 Model validation
	3.2.4 Consistency-based model selection


	4 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	References


