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ABSTRACT 

Hydraulic conductivity tests on geosynthetic clay liners (GCLs) to evaluate chemical 

compatibility can require months to years to reach equilibrium. There is a need for alternative 

methods to screen GCLs for chemical compatibility that are more expedient. In this study, a 

neural network machine learning (ML) algorithm was used to predict the hydraulic conductivity 

of Na-Bentonite (NaB) GCLs to leachate chemistry. Development of the ML predictive model 

(MLPM) included five steps: data collection, data cleaning and normalization, algorithm 

selection, parameters optimization, and model validation and evaluation. The MLPM is based on 

data collected from two decades of tests conducted on NaB GCLs with a broad range of 

leachates. Bentonite characteristics, permeant chemistry, and stress conditions are incorporated 

into the MLPM. Validation showed that the MLPM predicts hydraulic conductivity within one 

order of magnitude of the measured hydraulic conductivity in 85% of the cases. 

INTRODUCTION 

Geosynthetic clay liners (GCLs) containing sodium bentonite (NaB) are widely used as 

hydraulic barriers in waste containment facilities owing to their low hydraulic conductivity to 

water (<10-10 m/s) (Shackelford et al. 2000, Benson et al. 2004, Salihoglu et al. 2016, Zhang et 

al. 2019, Rowe 2020, Tan et al. 2020). The low hydraulic conductivity (K) of NaB GCLs is 

achieved by the osmotic swelling of montmorillonite in NaB. Swelling of the montmorillonite 

fills voids within the bentonite, resulting in tortuous flow paths that lead to low hydraulic 

conductivity (Chen et al. 2018). Aggressive leachates (ionic strength > 300 mM) can suppress 

osmotic swelling, resulting in much higher hydraulic conductivity (Jo et al. 2001, Bradshaw and 

Benson 2014, Chen et al. 2018).  

The hydraulic conductivity of GCLs is commonly measured in flexible-wall permeameters 

following procedures in ASTM D5084 and D6766 (ASTM 2016, 2020). These tests are often 

conducted on NaB GCLs with site-specific leachates to determine if low hydraulic conductivity 

can be achieved for the application under consideration. Testing times on the order of months to 

years can be required to reach the termination criteria in these tests, especially the geochemical 

termination criteria in D6766. Consequently, there is a need for alternative methods to assess the 

chemical compatibility of GCLs that are low-cost and more expedient. For example, swell index 

(SI) tests conducted following the ASTM D5890 (ASTM 2019) are used to evaluate how 

osmotic swelling of bentonite is affected by the chemistry of leachates. However, inferences 
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from swell index measurements require a bentonite-specific relationship between hydraulic 

conductivity and swell index (Kolstad et al. 2004, Chen et al. 2018). Factors such as effective 

stress, granule size, and mass per unit area cannot be evaluated with swell index tests. Therefore, 

for a given swell index, the hydraulic conductivity of GCLs can vary several orders of magnitude 

(Fig. 1). For example, at SI = 10 mL/2g, K of NaB GCLs varies from 10-11 to 10-6 m/s under the 

effective stress of 20-50 kPa. The trend line in Fig. 1 corresponds to 

𝐾 = 0.00097𝑆𝐼−5.3 (1) 
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Fig. 1. Relationship between the hydraulic conductivity and swell index of NaB GCLs 

based on the collected dataset. Note: In the dataset, 54 points from Jo et al. (2001), 3 points 

from Jo et al. (2004), 2 points from Benson et al. (2004, 2007), 31 points from Kolstad et al. 

(2004), 9 points from Jo et al. (2005), 20 points from Lee and Shackelford (2005), 7 points 

from Lee et al. (2005), 26 points Katsumi et al. (2007), 2 points from Benson and Meer 

(2009), 4 points from Bradshaw et al. (2013), 6 points from Bradshaw and Benson (2014), 8 

points from Scalia et al. (2014), 12 points from Bradshaw et al. (2016), 6 points from Tian 

et al. (2016), 7 points from Setz et al. (2017), and 42 points from Chen et al. (2018). 

Machine learning (ML) is an alternative method to estimate the hydraulic conductivity of 

NaB GCLs for site-specific leachates while accounting for multi factors that influence hydraulic 

conductivity. ML algorithms use a map of correlations between an independent variable (e.g., 

hydraulic conductivity) and dependent variables (e.g., leachate chemical variables, effective 

stress, granule size, etc.) to make a prediction, which allows the consideration of comprehensive 

effects on the hydraulic conductivity of NaB GCLs. This relatively new technique has been 

applied successfully to geotechnical engineering (Phoon 2020) for predicting soil permeability 

(Araya and Ghezzehei, 2019, Koltar et al. 2019), saturated water content (Szabó et al. 2019), and 

tunnel behavior (Kovačević et al. 2020).  

In this study, an ML predictive model (MLPM) was developed to predict the hydraulic 

conductivity of NaB GCLs using fourteen impact factors (independent parameters) that are 

commonly measured for GCLs. The impact factors were partitioned into three groups: bentonite 
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characteristics, permeant chemistry, and stress conditions. A database comprised of hydraulic 

conductivity and ancillary measurements (describing impact factors) was compiled from the 

literature to support MLPM development. The database was used to train a neural network 

algorithm to predict the hydraulic conductivity of NaB GCLs.  

METHODS 

Database with the Hydraulic Conductivity of NaB GCLs and Its Impact Factors. Data 

describing the hydraulic conductivity of NaB GCLs and 14 impact factors were collected from 

seventeen different sources published within the last two decades, all of which are listed in the 

citation for Fig. 1. All of the hydraulic conductivity tests were conducted in flexible-wall 

permeameters following the falling-head methods in ASTM D5084 and D6766 (ASTM 2016, 

2020). The impact factors on hydraulic conductivity include bentonite characteristics 

[montmorillonite content, cation exchange capacity (CEC), bound cation fractions, mass per unit 

area, and D50 granule size], permeant chemistry (ionic strength and concentrations of major 

monovalent and polyvalent cations and anions), and effective stress. Data from more than twenty 

different commercially available NaB GCLs were included in the database, with CEC of the 

bentonite ranging from 63 to 93 cmol+/kg and montmorillonite content ranging from 51% to 

88%. GCLs with granular and powdered bentonite were included in the database. The permeant 

solutions consisted of deionized water, municipal solid waste leachates, coal combustion product 

leachates, radioactive waste leachates, and salt solutions with a broad range of ionic strength (0 

to 3000 mM). Data were collected from tests conducted at average effective stresses ranging 

from 10 to 520 kPa. 

ML algorithm. The neural network algorithm was used in this study to construct the 

MLPM. The neural network mimics the way that the human brain operates to create 

interconnected neurons (Dongare et al. 2012), as presented in Fig. 2. The impact factors were 

used as input neurons (a set of neurons {xi|x1, x2,…xm}), and the hydraulic conductivity of 

NaB GCLs (f(x)) was set as output. Between the input and output neurons, one or more layers 

of neurons, i.e., the hidden layers, were inset to transfer information. Different weights were 

applied to the connection between each neuron to represent the importance of the neurons in 

the previous layer to the receiving neuron. For example, neuron a1 summed the values from the 

input layer with the weights (w) of each neuron (i.e., w1x1+w2x2+…wmxm). The hyperbolic tan 

function was applied to the sum values in order to include a non-linear relationship between 

each layer. The values of the neurons in the last hidden layers were received by the output 

layer and transformed into output values. The square error (i.e., the loss) of the whole network 

was calculated by comparing the output values and the corresponding measured hydraulic 

conductivities. To optimize the output, Limited-memory Broyden–Fletcher–Goldfarb–Shanno 

algorithm (L-BFGS) was used to minimize the loss by repeatedly updating the weight matrices. 

The iterations stop when the decrease in loss below a specific number or the preset maximum 

number of iterations is reached. 

Machine learning predictive model. The following procedure was used to create MLPM: 

1) Data cleaning: Data of different magnitude affect the model learning process differently.

Non-negative and non-zero data were normalized to 0~1 by a L2 norm:

𝐿2 𝑛𝑜𝑟𝑚 = √𝑚1
2 +𝑚2

2 +⋯+𝑚𝑛
2 (2) 
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where m1, m2, and mn are the original values of one impact factor. The normalized values were 

obtained by the ratio between the original value and the L2 norm (i.e., mn/L2 norm). Then, the 

normalized dataset was randomly divided into two sets for model training (75% of data) and 

model validation (25% of data). 
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Fig. 2. Illustration of multiple hidden layers neural network model. 

2) Algorithm selection: Agyare et al. (2007) developed a neural network model for

predicting the hydraulic conductivity of natural soil tested on two pilot sites. Soil

properties such as sand, silt, and clay content, bulk density, and organic carbon, were

used as the model inputs. The model presented reliable estimations when the input data

were normalized to 0-1. The neural network algorithm used in this study followed a

similar approach developed by Agyare et al. (2007). The code and model parameters are

introduced elaborately in the Sklearn website (https://scikit-

learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#).

3) Parameter optimization: The model parameters, such as the number of hidden layers,

the used loss functions, and the maximum number of iterations, were optimized by cross-

validation. The ranges of each model parameter were predefined based on experiences.

Then, the model tested all candidate parameters in the ranges to calculate the mean

squared error (MSE) of the regression. The parameters that achieved the minimum MSE

of the model were selected as the optimum parameters. The log-transformed mean

squared error (LMSE) was used instead of typical MSE to determine the optimization for

hydraulic conductivity. The LMSE was calculated based on the predicted and measured

hydraulic conductivity of NaB GCLs log-transformed forms. Additionally, the training

data were randomly split into five consecutive folds (subsets) during the optimization

instead of using the whole training dataset. Each of the five folds could be held for

validation while the other folds were used for model training for iterations. This approach

enhanced the reuse of data and avoided over-fitting.

4) Model validation and evaluation: The model was validated by predicting hydraulic

conductivities for each of the cases in the validation data set using the corresponding

impact parameters, and then comparing the predicted hydraulic conductivities to the

measured hydraulic conductivities in the validation data set. The performance of the
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model was evaluated by the ratio between the predicted and measured hydraulic 

conductivity of GCLs in the validation data set. The ratio is higher than one when the 

predicted hydraulic conductivity exceeds the measured hydraulic conductivity 

(conservative prediction) and lower than one when the predicted hydraulic conductivity is 

less than the measured hydraulic conductivity (unconservative prediction). The range of 

unconservative prediction was pointed, which range should be cautious for the 

application under consideration. 

RESULTS 

The comparison between the predicted (by the MLPM, Kp) and measured (Km) hydraulic 

conductivities in the validation data set is shown in Fig. 3. The red dashed lines correspond to a 

10-fold difference between the predicted and measured hydraulic conductivities, whereas the

blue dashed lines correspond to a 100-fold difference. In the validation dataset (total 60

measurements), 87% of the predicted hydraulic conductivities fall within the 10-fold range and

97% within the 100-fold range. Only two predictions fall outside the 100-fold (114 times higher

and 103 time lower) range. The data also exhibit no apparent bias, with the predicted hydraulic

conductivities are on average within a 3-fold (i.e., 100.48) difference from the measured hydraulic

conductivities.

Fig. 3. Comparison of MLPM predicted and measured hydraulic conductivities based on 

the testing dataset for model validation.  

The ratio of predicted and measured hydraulic conductivities in the validation data set is 

shown in Fig. 4 as a function of the measured hydraulic conductivity. Hydraulic conductivities 

were also predicted based on the swell index using Equation 1 and are shown in Fig. 4. In 

general, the ratio is smaller for the predictions made with the MLPM compared to that of the 
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swell index. Only 46% of the swell index predicted hydraulic conductivities fall within the 10-

fold range comparing to the measured hydraulic conductivity, which is lower than the 87% 

achieved by the MLPM prediction. In addition, the LMSE of the swell index prediction (LMSE 

= 1.39) is 2.7-times higher than that of the MLPM prediction (LMSE = 0.52). 

The trained and validated MLPM above was issued as a tool to predict the hydraulic 

conductivity of NaB GCLs. This model can be run in a Python environment and predict the 

hydraulic conductivity based on bentonite characteristics, permeant chemistry, and effective 

stress (i.e., the impact factors as model inputs). The prediction presented high reliability to screen 

out the NaB GCLs with high hydraulic conductivity (K > 10-8 m/s) since the predicted K is all 

higher than 10-10 m/s in the validation data set. When the GCL with a hydraulic conductivity 

around 10-10 m/s, the ratio of predicted and measured hydraulic conductivities varied from 0.1 to 

100 (Fig. 4). The ratio indicates that the measured hydraulic conductivity of the GCL could vary 

from 10-8 to 10-11 m/s. Thus, a hydraulic conductivity test is still suggested for the GCL. 

Fig. 4. The ratio of predicted and measured hydraulic conductivities using MLPM and 

swell index. 

SUMMARY AND CONCLUSIONS 

A predictive model was developed using machine learning to predict the hydraulic 

conductivity of NaB GCLs using 14 commonly measured and controlled parameters. A database 

containing 239 hydraulic conductivity measurements of various types of NaB GCLs to a wide 

range of permeant solutions and effective stress was used for calibration and validation of the 

model. Validation of the model indicated that 87% of the predicted hydraulic conductivities were 

within 10-fold of the measured hydraulic conductivities, and 97% within a 100-fold difference. 

Predictions made with ML method are more precise than predictions made based on the swell 

index. 
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