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Abstract: Onshore oil spills are directly related to soil contamination and significantly impact ground-
water, vegetation, and human life. Immediate cleanup work is carried out when an oil spill occurs,
but the currently used preventive measures are insufficient. Therefore, this study independently
developed a smart liner that allows general groundwater flow but blocks groundwater in the event
of a spill to prevent further spread, and aims to verify the excellence of the product through verifi-
cation. Because the verification of the smart liner performance in real-life conditions is difficult for
various reasons, large-scale experiments were simulated using a container. The Roll Spreading and
Inserting Method (RSIM) and Panel Injecting Method (PIM) were used as installation methods due to
the properties of the material employed. Through rainfall simulations, the discharge amount and
groundwater levels before and after an oil spill were measured, and a reaction diagram was created
following the smart liner’s demolition. From the results, it was found that both installation methods
successfully blocked more than 99% of the drainage, and soil contaminants were not detected outside
the installation area. These results confirm the effectiveness of the smart liner. Additionally, the
reaction diagram indicated that the RSIM and PIM installation reaction areas were identical, vali-
dating the suitability of both methods. By conducting this study, the performance of the smart liner
was verified, demonstrating its potential as an effective preventive measure against the spread of oil
contamination in soil.

Keywords: onshore; oil spill; smart liner; large-scale experiments; roll spreading and inserting
method; panel injecting method

1. Introduction

Oil is an essential energy source for humans, and production in the oil industry has
been steadily growing, increasing from 97 million barrels per day in 2015 to 100 million
barrels per day in 2021 [1–3]. However, alongside this growth, environmental issues due
to oil spills have been consistently noted. According to the ITOPF (International Tanker
Owners Pollution Federation) report, although oil spill incidents have decreased since the
1970s, the annual spill volume in the 2010s reached 164,000 tons [4]. Currently, 20% of oil
spills occur onshore; in the past, they mainly occurred in pipelines. Recently, they have
occurred in tanks and onshore facilities, including those used for crude oil storage [5,6].
Consequently, the oil industry is paying more attention to the environment and is making
efforts to reduce oil spills by setting stricter standards and regulations [7].

Onshore oil spills pose serious environmental, socioeconomic, and safety problems.
These spills can contaminate soil and groundwater, harm plant and animal life, and pose

Sustainability 2024, 16, 10626. https://doi.org/10.3390/su162310626 https://www.mdpi.com/journal/sustainability

https://doi.org/10.3390/su162310626
https://doi.org/10.3390/su162310626
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com
https://orcid.org/0000-0001-6970-694X
https://orcid.org/0000-0003-4956-3173
https://orcid.org/0000-0001-5726-6203
https://doi.org/10.3390/su162310626
https://www.mdpi.com/journal/sustainability
https://www.mdpi.com/article/10.3390/su162310626?type=check_update&version=1


Sustainability 2024, 16, 10626 2 of 18

health risks to nearby communities. In addition, socioeconomically, oil spills can devastate
local economies, especially those dependent on agriculture or tourism. On land, oil spills
affect soil. Oil spills in soil mainly occur at gas stations and refineries, where the soil
is exposed to small but continuous oil leaks [8]. Oil becomes physically or chemically
attached to soil particles or trapped within the soil matrix [9]. When the oil concentration
in soil reaches a level of 20 to 50 g/kg−1, it is considered a threat to human health and the
environment [10]. The primary objective of oil spill responses is to control the source of
the spill and prevent the spread of oil. Mechanical equipment such as skimmers, booms,
barriers, absorbents, dispersants, and in situ burning control is used for spill removal,
and bioremediation is actively utilized [11,12]. However, these methods are utilized post-
incident, and if oil spill occurrences are not monitored, the timing of response measures
can be significantly delayed.

In terms of sustainability, oil spills involve many problems. For oil companies, oil spills
not only affect the environment but also bring about a lot of pressure from civil society and
governments. This can lead to damage to the company’s international brand reputation
and government intervention or coercion into their operations [13–16]. In addition, these
companies have a responsibility to build social trust through safe operation and environ-
mental protection in the development and sale of oil, and to form a sustainable society. In
terms of environmental and economic aspects, oil spills cause environmental destruction
and waste of resources, which have a negative impact on sustainable development.

Although efforts are made to prevent oil spills for the development and sustainability
of the oil industry, oil spills can occur onshore for various reasons. Most of these are caused
by the lack of maintenance capacity of oil infrastructure, aging facility scale, and inadequate
regular inspection [17]. Many onshore pipelines and storage facilities were installed decades
ago, and their materials deteriorate over time. Without regular maintenance and timely
replacement, these structures become vulnerable to leakage and rupture. In addition,
accidents caused by human error during operation, theft in areas with social and political
problems, and natural disasters such as earthquakes, floods, and hurricanes are causes that
cannot be completely controlled.

Therefore, in the past, the technology to detect the area where oil spills occurred
was mainly studied, and the monitoring technology based on visual surveys using the
Shoreline Clean-up Assessment Technique is representative [18,19]. In addition, remote
sensing technology using self-light source or infrared/ultraviolet light for tracking and
mapping is being actively developed [20–23]. At this time, when an oil spill occurs, control
and blockade of the area are performed, and various methods are being proposed. The
representative blocking method is a vertical wall. It is installed around the contaminated
area to block the movement of liquid substances including groundwater. Representative
examples include mud walls, grouting walls, sheet pile walls, subsoil mixing, geomem-
branes, and lining technology. The permeability of the barrier material should be less than
10−7 m/s [24–26]. Then, a purification method for the contaminated soil is performed.
Purification methods such as incineration, soil washing, soil vapor extraction, biological
methods, and pyrolysis are mainly performed and are applied in various ways depending
on the environment [27–29].

However, these methods are post-processing technologies when an oil spill occurs.
Blocking the contaminated area can interfere with the flow of groundwater. This can affect
ground stability by raising and lowering the groundwater level in the surrounding ground,
so it should not be installed in advance. Accordingly, it is considered that the method of
filtering oil through the construction of Permeable Reactive Barriers (PRBs) [30] or blocking
oil spills using smart liners [31–34] is advantageous in terms of prior prevention and ground
sustainability. Here, PRBs are installed in the groundwater flow path and consist of a zone
of reactive material, such as granular iron. These barriers act as a filtration system, allowing
groundwater to pass through while capturing and filtering out oil contaminants, ensuring
that the groundwater leaving the PRB is free of oil substances. However, the installation
of PRBs involves mixing with the soil, necessitating preliminary laboratory experiments,
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numerical analysis, and thorough geotechnical surveys and design. The hydraulic behavior
of the subsurface must be fully understood. The performance benefits may not justify
how time-consuming and complex this process is. For these reasons, while PRBs can be
highly effective in filtering out oil contaminants from groundwater, their implementation
requires careful planning, design, and monitoring to ensure optimal performance and
environmental protection. In contrast, smart liners can be installed in the ground where
oil spills are expected without separate simulations. A smart liner is a type of blocking
wall that prevents oil spills and is easy to install and remove, unlike PRBs, which require
complicated design, construction, and demolition methods. Smart liners normally allow
for the free flow of groundwater, but when they come into contact with oil, they absorb it
and block the flow of groundwater within 24 h. Any change in hydraulic behavior around
the installation is a sign of an oil spill, and immediate remedial action is undertaken in
the area where the smart liner was installed. Even if the amount of oil spill exceeds the
capacity of the smart liner to absorb, no spillage is permitted because a barrier is formed.

Smart liners manufactured in fiber form have construction problems. It must be
constructed vertically within the ground, but it is difficult to use vertical construction
methods such as PRBs, sheet piles, and vertical membranes in the ground due to the
material’s lack of rigidity or hardness. Therefore, in previous literature [34], the Roll
Spreading and Inserting Method (RSIM), which can be used for this type of construction,
was presented through reduction models and numerical analyses. However, this is only a
verification of the RSIM’s accessory materials and does not present data showing that it
actually completely blocked oil spills or problems in construction.

Therefore, in this study, the smart liner was actually installed by applying the RSIM,
and the appropriateness of the method and the efficiency of preventing the spread of oil
spills were verified. The verification of the construction method was performed through
large-scale experiments using a large container that can control external conditions and
variables. Large-scale experiments have the advantage of enabling the smooth control
of pollutants and inducing accidents involving exposure to oil substances, as well as
continuous and repetitive water permeability tests and the recovery of samples from
undamaged smart liners. In addition, a Panel Injecting Method (PIM) that can be applied
to high depths and commercialized was designed, and the same experiment as the RSIM
was performed.

2. Smart Liner
2.1. Principles and Applications

The concept and function of the smart liner designed to prevent the spread of oil
spills on the ground are illustrated in Figure 1. The smart liner (Seoul, Republic of Korea)
features a triple-matrix structure in the form of fibers (woven fabric, oil-absorbing resin,
and non-woven fabric). Under normal conditions, it allows the flow of groundwater. When
it comes into contact with oil substances during an oil spill, the oil-absorbing resin within
the smart liner absorbs the oil and expands, reducing the permeability coefficient to below
10−7 cm/s. This effectively blocks the hydraulic behavior and prevents the leakage of
oil substances.

The main applications of the smart liner are shown in Figure 2, consisting of (a) oil
station sites that have double piping that transfers oil to the tank room and an oil pump
where there is a risk of oil leakage; (b) large-scale parking facilities such as parks or complex
shopping malls with high concentrations of automobiles; (c) factories and large industrial
facilities handling chemicals and oils at risk of spillage; and (d) as a barrier material in
landfills, slopes, and external walls to prevent oil contamination. In each application, if
a small amount of oil is spilled, the smart liner will absorb it all, and although it cannot
completely block it, it can help prevent it from spreading.
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2.2. Construction Methods
2.2.1. Roll Spreading and Inserting Method (RSIM)

The RSIM is a construction method using two backhoes after the smart liner has been
fully unrolled, as shown in Figure 3 [34]. First, trench excavation is carried out on the outer
part of the construction area, and supporting piles are driven into the curved point within
the excavation range for the straight installation of the smart liner. Afterward, the smart
liner is cut at a length longer than a specific distance (the distance between supporting piles).
A connecting stick is attached to the end of the smart liner and is inserted into the groove
within the support pile using a backhoe. At this time, since the installed smart liner is not
under tension, this is generated by rotating the supporting pile vertically and horizontally.
Finally, when installation is completed, it is buried in the ground through backfill.
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2.2.2. Panel Injecting Method (PIM)

In the case of the RSIM, the maximum production width of the roll-type smart liner
is 3 m, so construction is possible only at a depth of 3 m. The PIM was designed to allow
smart liners to be installed at heights of 3 m or more. Compared to the RSIM, the PIM can
be used at various construction depths and has a simple construction process that involves
simply pressing the smart liner into the ground.

The PIM is a method of embedding and connecting panels to the bottom of an exca-
vation without special construction equipment or support facilities, as shown in Figure 4.
This allows for the assembly of panels and smart liners on-site, which can be performed
with just one backhoe. The construction method involves installing the first panel and
inserting the second panel with connecting pipes into the first panel during the injecting
process. This process is applied to the entire construction area. In this study, the material of
the connecting pipe is rubber to enable complete waterproofing and a flexible connection,
and it is completely combined with the panel. When installation is complete, it is buried in
the ground through backfill.
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3. Setup of Large-Scale Experiments

There are environmental and regulatory problems with creating a forced oil spill in
real-life conditions. In the case of forced oil spills, the complete recovery of the oil is difficult
and the control of groundwater flow characteristics is impossible. Therefore, in this study,
a large-scale experiment bed was created using a container.
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3.1. Chamber

The export container (6 × 3 × 2.5 m) was used as a chamber, as shown in Figure 5.
The chamber’s inner walls were waterproofed, and partitions were installed in which the
RSIM and PIM were utilized, respectively. The RSIM and PIM application areas were a
square with a width and length of 3 m each. Additionally, drainage holes were drilled into
the front outer wall to facilitate the drainage experiments. To prevent soil loss from the
drainage holes, a steel mesh of 0.01 mm and non-woven fabric were installed.
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3.2. Subground and Observation Pipe

The subground was composed of bentonite powder and a mat to ensure that the water
drained entirely through the drainage holes rather than seeping into the floor. Additionally,
to promote the drainage of oil and water, there was a slope leading to the drainage hole.
This angle is approximately 9.5 degrees. The Total Petroleum Hydrocarbons (TPH) used
in the experiment were LNAPL (Light Non-Aqueous Phase Liquids) that float on water
because their specific gravity is lower than that of water. Since the water level above the
drainage hole is always maintained during the experiment, the possibility of downward
penetration into the subground (bento mat or bentonite powder) is low, and it is judged
that the oil will drain out through the drainage hole. At this time, before the creation of the
subground, an observation pipe was installed in the center to monitor the water level. The
installation schematic and the overall view are shown in Figure 6.
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3.3. Installation of the Smart Liner Using the RSIM and PIM

The initial RSIM installation area was 2 m (width) by 2 m (length) by 2 m (height).
Due to constraints of the workspace, the final RSIM installation area was reduced by 0.5 m
in each dimension, resulting in dimensions of 1.5 m (width), 1.5 m (length), and 1.5 m
(height). The installation schematic is shown in Figure 7a. The supporting pile is made of a
30 cm diameter circular steel pipe, with a groove in the middle to allow the connecting pipe
attached to the smart liner to be inserted, as shown in Figure 7b. However, the subground,
which was 20 cm thick, could not support the weight of the smart liner with the supporting
pile. Therefore, an additional frame was installed, as shown in Figure 7c.

Sustainability 2024, 16, x FOR PEER REVIEW 7 of 17 
 

Figure 6. Subground and observation pipe: (a) installation schematic; (b) composition of sub-
ground, slope, and observation pipe. 

3.3. Installation of the Smart Liner Using the RSIM and PIM 
The initial RSIM installation area was 2 m (width) by 2 m (length) by 2 m (height). 

Due to constraints of the workspace, the final RSIM installation area was reduced by 0.5 
m in each dimension, resulting in dimensions of 1.5 m (width), 1.5 m (length), and 1.5 m 
(height). The installation schematic is shown in Figure 7a. The supporting pile is made of 
a 30 cm diameter circular steel pipe, with a groove in the middle to allow the connecting 
pipe attached to the smart liner to be inserted, as shown in Figure 7b. However, the sub-
ground, which was 20 cm thick, could not support the weight of the smart liner with the 
supporting pile. Therefore, an additional frame was installed, as shown in Figure 7c. 

The PIM installation area schematic is shown in Figure 7d, with dimensions of 2 m 
(width), 2 m (length), and 2 m (height). Modular panels were fabricated with dimensions 
of 2 m (width), 1 m (height), and 0.1 m (thickness). The advantage of these modular pan-
els is their flexibility in adjusting the construction area and depth by varying the number 
of panels used. The connection with the smart liner follows a “panel–smart liner–panel” 
sandwich structure, with bolted joints. Additionally, pins can be attached to the lower 
part of the panels for penetration into the ground, and connections can be attached to the 
upper part to connect the panels to each other. The assembled modular panels are shown 
in Figure 7e. The design of the panels is shown in Figure 7f. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 7. RSIM: (a) installation schematic; (b) connection of supporting pile and smart liner using 
connecting pipe; (c) outside frame to support the weight of smart liner; and PIM: (d) installation 
schematic; (e) connection of panel and smart liner; (f) design drawings of the modular panel. 

Figure 7. RSIM: (a) installation schematic; (b) connection of supporting pile and smart liner using
connecting pipe; (c) outside frame to support the weight of smart liner; and PIM: (d) installation
schematic; (e) connection of panel and smart liner; (f) design drawings of the modular panel.

The PIM installation area schematic is shown in Figure 7d, with dimensions of 2 m
(width), 2 m (length), and 2 m (height). Modular panels were fabricated with dimensions
of 2 m (width), 1 m (height), and 0.1 m (thickness). The advantage of these modular panels
is their flexibility in adjusting the construction area and depth by varying the number
of panels used. The connection with the smart liner follows a “panel–smart liner–panel”
sandwich structure, with bolted joints. Additionally, pins can be attached to the lower
part of the panels for penetration into the ground, and connections can be attached to the
upper part to connect the panels to each other. The assembled modular panels are shown
in Figure 7e. The design of the panels is shown in Figure 7f.

The overall view of the RSIM and PIM is shown in Figure 8. To ensure full contact
with the ground surface, bentonite was carefully applied underneath the smart liner after
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installation. After the application of 2 methods, backfilling was performed using silica
sand, which drains well.
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alyzed. In this experiment, kerosene, a type of TPH, was used. Kerosene was selected 
over gasoline and diesel because gasoline’s high volatility poses handling challenges, 
while diesel’s lower volatility may not adequately represent the desired experimental 
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3.4. Overall View of Large-Scale Experiments

The external view of the large-scale experiments is shown in Figure 9. To evenly
distribute water across the entire area, 30 sprinklers were installed per section. Addition-
ally, buckets were placed to collect water from the drainage holes, along with temporary
storage tanks and water tanks for storing the collected water. Since discharging oil into the
environment can be harmful, all the water used in the experiments was stored in the water
tanks and treated separately as waste.
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4. Process of Large-Scale Experiments

In the large-scale experiments, after quantifying the results of the ground stabilization
experiment, TPH was injected. Following this, the water level and drainage were measured,
and the contamination of the water and soil was analyzed. Finally, after demolition, a
distribution diagram of the reactions between the smart liner and TPH was analyzed. In
this experiment, kerosene, a type of TPH, was used. Kerosene was selected over gasoline
and diesel because gasoline’s high volatility poses handling challenges, while diesel’s lower
volatility may not adequately represent the desired experimental conditions. The type of
oil is not important in terms of the reaction.
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4.1. Ground Stability with Measurement of Water Permeability

To stabilize the ground in the RSIM and PIM installation areas, a method involving
soil saturation using sprinklers and subsequent drainage through a valve was employed, as
shown in Figure 10. This process, a type of water compaction (rearrangement of sand parti-
cles by water), involved repeating the process of operating the sprinkler and discharging
water through the drain valve.
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Figure 10. Ground stability: (a) input and discharge of water (compaction using water); (b) waterproof
cover to prevent inflow of water.

Water was input into each section by operating the sprinklers for 12 h. After stopping
the sprinklers, the drainage valves were opened, and the drainage volume and water level
were measured over 500 min. This process was repeated twice, and the data were recorded.
To prevent the inflow of external moisture, such as rainwater, a waterproof cover was
installed over the container during the experiment. The water level was measured using a
tapeline in an observation pipe, and the drainage volume was calculated by measuring the
height of the water collected in a bucket.

4.2. Injection of Oil Substances and Measurement of Water Level and Drainage Volume

The ground in the RSIM and PIM areas was stabilized, ensuring that the same results
were obtained in the repeated experiments. To verify the oil absorption performance of the
smart liner, oil with 100 L of TPH was added to each section, as shown in Figure 11.
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To compare with the ground stabilization experiment results, the sprinkler was op-
erated for more than 12 h after TPH injection, and the first experiment was conducted by
measuring the water level and drainage using the same method as that used in the ground
stabilization experiment. After the first experiment was completed, the second experiment
was carried out by operating the sprinkler for more than 12 h without additional TPH
injection and measuring the water level and drainage. This process aimed to verify the



Sustainability 2024, 16, 10626 10 of 18

results of the first experiment and to check for any additional reactions between the TPH
and smart liner.

The experimental procedure is as shown in Figure 12: (1) after draining was com-
plete (when the water level was zero), 100 L of TPH was injected and left to stand for
24 h; (2) ground saturation was performed by operating the sprinkler (for 12 h); (3) the
groundwater level reduction and drainage were measured by opening the drainage valve
(observed for 500 min); (4) complete drainage of the ground (until the water level was zero)
was performed; and (5) steps (2) and (3) were repeated without additional TPH injection.
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Figure 12. Experimental procedure for verifying the performance of smart liner with TPH injection:
(a) injection of TPH (procedure 1); (b) operation of sprinkler (procedure 2); (c) measurement of water
level and drainage (procedure 3).

5. Results
5.1. Ground Stability

Ground stabilization experiments were performed twice for each installation area.
The measurement time was 500 min, and the changes in the water level and drainage are
shown in Figure 13 and Table 1. The result graphs show differences due to different initial
groundwater levels. To confirm whether the ground had stabilized, the experimental data
from each area must be consistent.
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Table 1. Results of water level and drainage for ground stability.

Areas

Water Level Drainage

Initial
(m)

After 500 min
(m)

Change Ratio per
Minute

(mm/min)

Amount
(kg)

Amount per
Minute

(kg/min)

Amount per Water
Level

(kg/cm)

RSIM
1st 1.07 0.83 0.48 786.50 1.57 32.78
2nd 0.98 0.76 0.44 664.60 1.33 30.21

PIM
1st 1.54 0.96 1.16 1584.00 3.17 27.31
2nd 1.48 0.93 1.10 1461.90 2.92 26.58

To set the initial water level conditions, time adjustments were made to the second
RIM and PIM experimental results. The RIM data were shifted 148 min to the right along
the x-axis (time), and the PIM data were shifted by 25 min. As a result of these adjustments,
as shown in Figure 14a, the changes in the water level over time in each experimental area
exhibited similar trends.
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To adjust for drainage, corrections were made to both the time and drainage amounts
in the second RIM and PIM experimental results. For the RSIM, the data were shifted
148 min to the right on the x-axis (time). Additionally, on the y-axis (drainage), the data
were adjusted upwards by 280 kg, which corresponds to the drainage at 148 min in the
first experiment. For the PIM, the data were shifted 25 min to the right on the x-axis. On
the y-axis, the data were adjusted upwards by 133 kg, corresponding to the drainage at
25 min in the first experiment. As shown in Figure 14b, these corrections resulted in similar
trends in drainage changes over time across the different experimental areas. This indicates
that both the RSIM and PIM areas had stabilized, and similar results can be expected from
repeated experiments.

5.2. Analysis of RSIM and PIM Areas After TPH Injection

The corrected graph and detailed results of the entire dataset after TPH injection are
shown in Figure 15 and Table 2. As a result of the water level correction, as shown in
Figure 15a, compared to the ground stabilization data, it was confirmed that the groundwa-
ter level gradually decreased over time as the experiments progressed. In the RSIM and
PIM installation zones, when considering the same water level changes, the time for the
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groundwater level to decrease gradually increased, and accordingly, the change ratio per
minute increased.
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Table 2. Results of water level and drainage after injection of TPH.

Areas

Water Level Drainage

Changes
(m)

Time
(min)

Change Ratio per
Minute

(mm/min)

Amount
(kg)

Amount per
Minute

(kg/min)

Amount per
Water Level

(kg/cm)

RSIM
No TPH

1.015→0.850
(0.165)

318 0.52 480.21 1.51 1.51
TPH 1st 350 0.47 446.97 1.28 1.28
TPH 2nd 490 0.34 336.15 0.69 0.69

PIM
No TPH

1.435→1.180
(0.255)

187 1.36 701.61 3.75 3.75
TPH 1st 230 1.11 608.26 2.64 2.64
TPH 2nd 325 0.78 456.04 1.40 1.40

The results of the correction for drainage are shown in Figure 15b. Unlike Figure 15a,
which shows the water level with time, drainage is shown according to the water level
to check the results more intuitively. As a result, it can be confirmed that the drainage
decreases as the RSIM and PIM are installed and the first and second experiments are
performed. Here, a high slope means that the drainage speed is fast, and a low slope means
that the drainage speed is slow.

The water level analysis indicated that after the injection of TPH, the time taken for
the water level to decrease to the same level increased, and the water level decreased
over time. The drainage experiment results confirmed that after TPH injection, both the
drainage volume and the drainage volume per water level decreased. This trend became
more pronounced in the second experiment. This was due to the additional reaction caused
by the movement of the TPH in the soil within the smart liner installation area toward the
smart liner after the first experiment. In other words, the smart liner buried in the ground
continuously absorbed TPH up to its capacity.

5.3. Measurement of Oil Leakage

To confirm the effectiveness of blocking any oil leakage, the water quality in the water
tank and temporary tank and the soil in the chamber were partially collected during and
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after the experiment. The water quality analysis samples were taken from seven locations:
(1) raw solution of TPH; (2) observation pipe of RSIM region after 24 h TPH injection;
(3) water tank of RSIM region after the first drainage; (4) water tank of RSIM region after
the second drainage; (5) observation pipe of PIM region after 24 h TPH injection; (6) water
tank of PIM region after the first drainage; and (7) water tank of PIM region after the second
drainage. The soil quality analysis samples were taken from eight locations: (1) inside and
outside of RSIM region (four samples); (2) inside and outside of PIM region (four samples).
The sampling location details for the soil quality analysis are shown in Figure 16.
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After the completion of the experiments, the chamber was dismantled to examine the
contact and reaction characteristics between the TPH and smart liner. The smart liners
installed using the RSIM and PIM were retrieved (Figure 17a). The retrieved smart liners
were then disassembled, as shown in Figure 17b,c.
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Figure 17. Inspecting the response of the smart liner: (a) demolition; (b) retrieved smart liner in the
RSIM area; (c) retrieved smart liner in the PIM area.

During the inspection, it was observed that the reacted parts of the smart liner had
undergone gelation (gel form), while the unreacted parts remained in powder form, as
shown in Figure 18. The reaction status of the smart liner can be assessed by touch; however,
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this method is subjective. Therefore, a knife was used to partially check for gelation, and
the reacted areas were sketched.
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Figure 18. Inspection of reacted areas: (a) gelation of the smart liner; (b) powder form of the
smart liner.

The water oil contaminant analysis results are shown in Table 3. The initial concen-
tration of TPH was set at 10,000 ppm. After TPH was injected and water was added
through the sprinkler, the initial water oil contaminant was measured in the RSIM and
PIM observation pipes. Subsequently, during the two drainage experiments, the collected
drained effluent was stored in a water tank and sampled. The samples were obtained from
each tank and injection pipe in three 500 mL samples.

Table 3. Results of water oil contaminant.

Areas Locations Measured
Quantity (ppm)

Difference Between
Inside and Outside (ppm)

Outflow
Rate (%)

Blocking
Rate (%)

RSIM
Observation pipe 2788.7 - - -

Drainage hole in first experiment 16.2 2772.5 0.58 99.42
Drainage hole in second experiment 1.8 2786.9 0.06 99.94

PIM
Observation pipe 5827.9 - - -

Drainage hole in first experiment 5.1 5822.8 0.09 99.91
Drainage hole in second experiment 0.4 5827.5 0.01 99.99

The results showed that the effluent from the RSIM and PIM areas had significantly
lower ppm values compared to those measured in the observation pipes. Additionally,
the ppm of the drainage effluent tended to decrease as the experiment progressed. In
Table 3, the “difference between inside and outside” refers to the ppm difference between
the observation pipe and the drainage hole in each experiment. Using this difference, the
outflow rate and blocking rate were calculated.

The soil sampled from the locations indicated in Figure 16 was analyzed, and the
results are presented in Table 4. The analysis indicates that the inside soil in the RSIM and
PIM areas showed oil contamination levels between 40% and 60% relative to the original
concentration of 10,000 ppm. However, the outside soil in the RSIM and PIM areas did
not show any contamination, resulting in an outflow rate of 0% and a blocking rate of
100%. This means that the containment measures within the RSIM and PIM areas were
highly effective in preventing oil leakage, as no contamination was detected in the external
soil samples.
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Table 4. Results of soil contamination.

Areas Locations Measured Quantity (ppm) Outflow
Rate (%)

Blocking
Rate (%)

RSIM

Inside (sample 1) 4019 - -
Inside (sample 2) 5987 - -

Outside (sample 1) LOD (Limit of Detection) 0 100
Outside (sample 2) LOD (Limit of Detection) 0 100

PIM

Inside (sample 1) 5555 - -
Inside (sample 2) 4518 - -

Outside (sample 1) Not detected 0 100
Outside (sample 2) Not detected 0 100

To calculate the reaction area of the smart liner, a reaction diagram was created using
AutoCAD, as shown in Figure 19. In the RSIM area, a uniform reaction was observed at a
height of approximately 1 m from the front of the valve. The reactions followed in sequence
from the front to the side (left and right) and the back of the valve. In the RSIM area,
4.5438 m2 out of a total area of 6 m2 reacted, which corresponds to approximately 76%. In
the PIM area, a uniform reaction was observed at a height of approximately 1.2 m from the
front of the valve. The side parts (left and right) and the back of the valve reacted relatively
uniformly within 0.8 m. In the PIM area, 4.3557 m2 reacted out of a total of 11.566 m2

(excluding the frame area), corresponding to approximately 38%. The difference in these
ratios is due to the installation area. Since the reaction area was similar when 100 L of TPH
was injected, it was confirmed that the performance of the smart liner was not affected by
the use of any particular construction method.
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6. Discussions

Previously, oil spills on land were mainly discussed as cleanup projects after the spill.
Currently, oil storage facilities or pipelines on land are equipped with spill detection sensors
or monitoring technologies, but the technology cannot be applied to past infrastructure,
and spills were confirmed visually or by smell, such as crop failures in farmlands, wells,
or valleys. In other words, when a spill was detected, it was too late, and a lot of money
was needed for cleanup. However, the proposed systems can be considered a preliminary
measure to prevent the spread of oil that did not exist before. The smart liner fence installed
in oil-related facilities prevents oil from spreading to a wider area, and can be detected by a
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monitoring system after contact. Cleanup projects after detection can be reduced, and since
oil is absorbed and groundwater movement is allowed, unless the entire installation area
is completely blocked, time for cleanup projects can be secured. Currently, a monitoring
system that can check the response of smart liners on the ground is being developed and
studied, and it is expected that this will contribute to the smartness of the system.

Also, smart liners can contribute to environmental protection, resource efficiency,
and long-term usability in terms of sustainability. This prevents the widespread spread
of oil into soil and groundwater, leading to the prevention of long-term damage to the
ecosystem. Smart liners can minimize unnecessary resource use by reacting only when
oil is present. Under normal conditions, groundwater flow can be maintained without
separate energy input or additional infrastructure. In addition, since smart liners directly
absorb oil and block its spread, there is no need for large-scale cleanup equipment or
disposable absorbents. This helps reduce the generation of secondary waste during the oil
spill recovery process. Only the necessary parts can be constructed.

This study verified whether smart liners can function when installed underground to
prevent the spread of oil spills. The construction methods used were the RSIM proposed
in the existing literature [34] and the PIM designed to allow deep-depth construction. In
the results of the large-scale experiment, it was confirmed that the smart liner’s function
of preventing oil spill spread was excellent even with different construction methods. In
addition, the groundwater flow test before TPH injection showed similar values regardless
of the presence or absence of the smart liner, and it is predicted that normal groundwater
flow will be maintained if an oil spill does not occur after installation. This is significant in
that the installation of the smart liner does not lose the original function of the ground and
only contributes to the prevention of oil spill spread.

The limitation of this study is that it was conducted in a specific soil (silica sand) with
good permeability. Although the experimental ground confirmed a blocking performance
of over 99%, there is a possibility that oil may spread more quickly in the gravel-based
ground or basalt ground with extremely high permeability. In order to prepare for this, it is
necessary to review methods such as expanding the absorption capacity of smart liners or
adding additional auxiliary blocking systems. In addition, the risk of oil spills and the ex-
pected frequency of leakage should be considered for each facility. If installation guidelines
for smart liners for each oil facility and adjustment of the amount of oil-absorbing resin
inside the smart liner are implemented, it is believed that it will contribute to preventing
oil spread most innovatively.
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