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Abstract: In this paper, a method based on image recognition was proposed to detect the defects of poly-12 

ethylene (PE) gas pipeline, especially the deformation due to the indentation. Firstly, the pipeline -detection VGG 13 

(PD-VGG) model was established based on the convolutional neural network (CNN), and appropriate model 14 

parameters were optimized through model training. The defect recognition rate of the improved model can reach 15 

94.76%. Following, the weighted average graying algorithm was used to separate the defects characterized by 16 

deformation. Then, an improved gamma correction algorithm was applied to achieve image enhancement, and 17 

the interference of impurities adhered on inter surface of pipeline was also removed by using multi-layer filters. 18 

The edge detection of the defect image was completed by using the Canny operator, and following the screening 19 

between the target contour and the interference contour by using top-contour. Finally, the algorithm for minimum 20 

outer rectangle algorithm was used to fit the defect contour, and the eigenvalues of deformation defects were 21 

extracted. The results indicate that the above defect detection method can better extract the deformation contour 22 

of the dented pipeline. The high agreement with the experimental results provides a basis for the research of 23 

effectively recognizing whether the pipeline has undergone ductile failure only through profile detection of de-24 

fects. 25 
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2 

1 Introduction 32 

Nowadays, the advantages of polyethylene (PE) materials have led to their widespread use in areas such as 33 

lifeline engineering [1-2]. PE pipes have become a suitable alternative to steel pipes due to their lightweight, low 34 

cost, anti- corrosion and easy installation. Because sunlight causes rapid degradation of PE materials, PE pipeline 35 

must be buried underground, which makes it inspection process more difficult. Traditional inspection methods 36 

suitable for pipeline have complex equipment, high cost, and are not easy to visualize defects. Furthermore, 37 

manual inspection methods are inefficient and labor intensive. Therefore, the use of various inspection robots to 38 

detect defects in the pipeline has become a research hotspot. Among them, the machine vision is a method that 39 

utilizes a pipeline robot equipped with a light source and a camera to directly collect, transmit and process images 40 

of the inside of the pipeline in real time. It then utilizes image recognition technology for non-destructive, non-41 

contact inspection, which improves the efficiency of pipeline inspection and reduces the influence of human 42 

subjectivity. In addition, image processing technology, as a contactless, on-line inspection method, is widely used 43 

in the research of pipeline defect detection, and a large number of related studies have been carried out by scholars 44 

at home and abroad [3-6]. Before defects are recognized, image preprocessing techniques are usually used to 45 

improve the quality of the image or to extract defective regions in preparation for subsequent defect recognition 46 

and classification. Image processing techniques mainly involve image noise reduction [7-8], contrast enhance-47 

ment [9], image segmentation [10] and morphological processing [11]. Motamedi [12] et al. performed operations 48 

such as gray scaling, filtering and morphology on pipe images to achieve nondestructive detection of defects in 49 

urban drainage pipes. Khalifa [13] et al. first performed grayscale transformation on drainage pipe images, then 50 

segmented the image by finding the optimal threshold, then enhanced the image by using the open operation, and 51 

finally, Laplace edge detection was performed on it to extract the crack eigenvalues. Kirstein [14] et al. combined 52 

Canny edge detection, Hough's linear transform and shortest path algorithm to also achieve defect detection of 53 

drainage pipes. Alam [15] et al. first grayed out the pipe image, then used the Sobel gradient method to detect its 54 

edges, and then removed unwanted tiny objects on the image, and finally performed feature extraction on the 55 

processed image to identify pipeline defects. Huynh [16] et al. used the DEE algorithm to achieve automatic 56 

detection of small cracks in pipelines. Mashford [17] et al. used the Haar wavelet transform to detect edges of 57 

pipeline images. Wei [18] et al. used an industrial camera to capture images of the inside of natural gas pipelines, 58 

and used the Laplacian edge detection algorithm to successfully extract the welding seam with defects in them. 59 

Altabey [19] built a pipeline crack image segmentation model based on semantic segmentation, and extracted the 60 

cracks in high-resolution crack images by using the pipeline image segmentation model. The accuracy rate, recall 61 

rate, and F-score of the proposed method are recorded 89.3%, 85.7%, and 80.4%, respectively. 62 

Along with image processing techniques, pattern recognition techniques are also important elements which 63 

are mainly used to identify and classify defects. First the desired features are extracted in the segmented region 64 
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and then the classifier will use these features as inputs for further defect recognition, so this step of pattern recog-65 

nition is crucial. Su and Yang [20] proposed an MSED-based image processing method for drainage pipes, where 66 

the area of the defective region, aspect ratio, and eccentricity are used as vectors of discriminative features, based 67 

on which the shape of the defect is determined. Sinha [21] found that combining images processed based on a 68 

morphological approach with a neural network-based classifier can lead to better detection than using any of the 69 

methods alone. Zhou [22] presented a defect inspection algorithm of metal surface based on machine vision. The 70 

proposed surface defect inspection algorithm first used improved bi-dimensional empirical mode decomposition 71 

(BEMD)-based extracting algorithm to perform initial extracting of surface defects through filtering out complex 72 

textures on the metal surface, while retaining as much effective information as defects as possible. Moselhi [23] 73 

proposed a simplistic image processing means using blurring and edge detection for the acquired images of un-74 

derground sewage pipelines, extracting the basic features of the defects as well as the elongation rate as the 75 

feature vectors, and also incorporating the commonly used neural network method to classify the defects. 76 

One of the main problems in using image recognition technology is how to effectively extract and recognize 77 

defects inside PE gas pipeline. Although most of the current pipeline visual inspection methods can obtain the 78 

image of the internal surface in pipeline, the processed image of detect is blurred, and the defect extraction effect 79 

will be seriously affected due to noise and uneven lighting phenomenon. For the detection of defects inside PE 80 

pipeline, a method is needed to improve the quality and recognition efficiency of defect images. 81 

This paper proposes an image-based method for detecting internal defects in small-diameter PE gas pipeline. 82 

Firstly, the PD-VGG model was established based on the convolutional neural network, and appropriate model 83 

parameters were optimized through model training. The defect recognition rate of the improved model can reach 84 

94.76%. Following, the weighted average gray scale algorithm was used to separate the defects characterized by 85 

deformation. Then, an improved gamma correction algorithm was applied to achieve image enhancement, and 86 

the interference of impurities adhered on inter surface of pipeline was also removed by using multi-layer filters. 87 

The edge detection of the defect image was completed by using the Canny operator, and following the screening 88 

between the target contour and the interference contour by using top-contour. Finally, the algorithm for minimum 89 

outer rectangle algorithm was used to fit the defect contour, and the eigenvalues of deformation defects were 90 

extracted. The results indicate that the above defect detection method can better extract the deformation contour 91 

of the dented pipeline. The high agreement with the experimental results provides a basis for the research of 92 

effectively recognizing whether the pipeline has undergone ductile failure only through profile detection of de-93 

fects. 94 

2 Identification and classification of PE pipeline defects 95 

2.1 Data set establishment and data enrichment 96 

Using neural network for PE gas pipeline defect image classification, the first thing needed is the dataset, 97 

through the collation and generalization of the gas pipeline defect data set in this paper. This dataset contains 98 
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three classic types of defects in gas pipelines- deformation (caused by external loading), misalignment (caused 99 

by welding errors, as shown in figure 1), and breakage (rupture, crack). The total number of images is 458, and 100 

the specific data are shown in Table 1. 101 

Table 1 Raw data for PE pipeline 102 

PE gas pipe raw data 

Category Normal Deformation Misalignment Breakage 

Quantity (sheets) 150 104 96 108 

In this paper, the collected images were augmented to increase the number of datasets on the one hand, 103 

prevent overfitting on the other hand, and provide better generalization for relevant image recognition. The broad-104 

ening methods used are angle rotation rotation, noise perturbation, random cropping, horizontal (vertical) flipping, 105 

etc., as shown in figure 1. 106 

107 
Fig. 1 Data enrichment 108 

2.2 Pipeline defect identification modeling and research 109 

Migration learning is a branch of machine learning. Migration learning utilizes the data, parameters and 110 

weights of the source domain to transfer the knowledge to the target domain and complete the new model. At 111 

present, there are not many studies on the defective image recognition of gas pipelines, and the amount of data 112 

owned is not large. This paper is about the image recognition of PE gas pipe defects with small samples, and the 113 

migration learning of VGG-16 will be used to build the PD-VGG model by freezing layer, as shown in figure 2. 114 

115 
Fig.2 Advantages of migration learning over traditional machine learning 116 

117 
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Generally when the target dataset is small, the number of frozen blocks needs to be decided according to the 118 

similarity of the features of the target dataset and the features of the ImageNet dataset. Because it is impossible 119 

to determine the extent of this similarity, this paper decides to build a Freeze scheme. The scheme is divided into 120 

a total of five times, each time the number of frozen convolutional blocks plus one, the parameter weights of the 121 

already frozen convolutional blocks are not changed, and the unfrozen convolutional blocks follow the estab-122 

lished densely connected classifiers for training. The specific way is shown in Table2. 123 

Table2 Freeze scheme 124 

Scheme Top Block1 Block2 Block3 Block4 Block5 

F_5 Train Freeze Freeze Freeze Freeze Freeze 

F_4 Train Train Freeze Freeze Freeze Freeze 

F_3 Train Train Train Freeze Freeze Freeze 

F_2 Train Train Train Train Freeze Freeze 

F_1 Train Train Train Train Train Freeze 

125 

80% of the dataset is divided into the training set and 20% is the test set, and the learning rate is set to be 126 

0.003, Dropout to be 0.3, and 16 samples to be a Batch-Size as shown in figure 3. 127 

128 

Fig.3 Images in a Batch 129 
The five schemes are assigned to train 15 Epochs, and the results are shown in figure 4. It can be seen that 130 

as the degree of freezing rises, the accuracy of the model also rises, and when freezing five convolutional blocks, 131 

probably because the image features of the target training set have a certain correlation with the image features 132 

of ImageNet, its accuracy reaches more than 85%, while the performance at the other degree of freezing is not 133 

very good, all below 80%, probably because the pipe defect image belongs to a small sample dataset, and its 134 

pipeline defect images belong to a small sample data set, there are relatively few images in the training set, and 135 

there are a lot of parameters that need to be learned and changed in the network model, which leads to unfavorable 136 

phenomena such as overfitting resulting in the model's accuracy can not be increased, because it can be concluded 137 

that the best degree of freezing is F_5. 138 
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139 
Fig.4 Comparison of Accuracy Rates for Different Levels of Freezing 140 

141 

2.3 Optimization of parameters and comparative analysis 142 

After determining the best degree of freezing, the training accuracy of the PD-VGG network model is around 143 

88%, which is not particularly desirable, and it is necessary to improve the overall accuracy by changing the 144 

values of the model parameters and other values, so that the model is more suitable for pipeline defect images. 145 

Adding the Dropout method to the PD-VGG model in this paper can avoid the overfitting phenomenon of 146 

the model to a certain extent. When the signal passes forward, Dropout randomly selects a neuron and stops that 147 

neuron with a certain probability, which reduces the overfitting of the neural network to the training data, as 148 

shown in figure 5. In order to make the model perform the best performance, five groups of different random 149 

inactivation percentages are compared and experimented in this paper to determine the most suitable Dropout 150 

parameters for the model, as shown in figure 6. The settings of the Dropout parameters are 0.1, 0.3, 0.5, 0.7, and 151 

0.9. It can be seen that as the probability of neuron inactivation increases, the accuracy of the model is gradually 152 

improving. When the probability is 50%, the improved accuracy reaches the maximum, and then shows a de-153 

creasing trend. This is because at higher probability, the destruction of parameter update caused by neuron inac-154 

tivation will result in a rapid decay of the recognition accuracy. Therefore, according to the experiments, this 155 

paper finally chooses the neuron inactivation probability of 50%, which means that the Dropout parameter is 0.5. 156 

Fig. 5 Addition of Dropout neural network 
Fig. 6 Effect of stochastic inactivation on model accu-

racy 

157 

Because the PE gas pipeline defect image dataset belongs to small sample dataset, generally speaking, the 158 
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number of training rounds does not need to be a lot of convergence to achieve a certain degree of accuracy, this 159 

paper, Epoch selected 15 rounds, from figure 7, we can see that, in the case of the same number of rounds, with 160 

the increase in the Batch-Size, the accuracy of the model is also increasing gradually, in the Batch-size of 32, its 161 

training accuracy is the highest, and after convergence, with the increase of the number of batches, the accuracy 162 

shows a decreasing trend, which proves that the model does not reach the established accuracy under the large 163 

number of batches, and the model does not converge, for the consideration of the convergence speed, this paper 164 

sets the Batch-size to 32. 165 

166 
Fig. 7 Impact of number of batches under the same Epoch on modeling 167 

168 

In order to achieve the best performance of the PD-VGG model and to seek the optimal learning rate, this 169 

paper uses multiple sets of experiments to continuously adjust the learning rate of the model and to check the 170 

effect of the learning rate on the accuracy of the model and on the number of rounds in which there is no longer 171 

a significant change in the accuracy, and the data from five sets of data were selected from the multiple sets of 172 

experiments to be compared, as shown in Table 3. 173 

174 

Table 3 Effect of learning rate on the model 175 

Learning rate 0.3 0.03 0.003 0.0003 0.00003 

Accuracy rate (%) 80.37 83.17 88.98 93.44 93.58 

No. of rounds (pcs) 10 10 15 25 >30

176 

According to the above information, it can be seen that the model accuracy improved by roughly 8% during 177 

the reduction of the learning rate from 0.3 to 0.003, and then the trained Epoch increased to 5 rounds. In the 178 

reduction to 0.0003, the accuracy reached a more satisfactory 93.44%, but the trained Epoch increased to 25 179 

rounds. After lowering it again by an order of magnitude, the change in accuracy was not significant, but the 180 

Epoch increased a lot, increasing the training time a lot. This is probably because a smaller learning rate slows 181 

down convergence and increases the time to find the optimum. Although a learning rate of 0.00003 presents better 182 

results than 0.0003, the former requires a large number of training rounds and more training time. Therefore, the 183 

learning rate of 0.0003 is finally chosen in this paper. 184 

Based on the results of the above sets of experiments, this paper finalizes the PD-VGG model. Then the 185 

optimization parameters in the image recognition process of PE gas pipeline defects are determined. Among them, 186 
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Dropout random deactivation is determined as 0.5, the number of Batch-Size batches is determined as 32, and 187 

the learning rate of the optimizer is determined as 0.0003.The designed PD-VGG is compared with AlexNet, 188 

VGG-16, SVM, and VGG-19 to verify the reliability and effectiveness of the algorithm in this paper, as shown 189 

in Table 4. 190 

Table 4 Comparison of training results for each network 191 

Network models Training Accuracy（％） Training loss Test Accuracy（％） Test Loss 

AlexNet 82.25 0.9068 69.27 1.046 

VGG-16 88.98 0.8818 79.85 0.9603 

VGG-19 87.45 0.9096 72.36 1.008 

SVM 93.37 0.8122 82.74 0.9172 

PD-VGG 94.76 0.7974 86.89 0.8765 

192 

As can be seen from the information in Table 4, the AlexNet model has the lowest accuracy and poor gen-193 

eralization ability when dealing with the PE gas pipeline defect image dataset. The PD-VGG training established 194 

in this paper has the highest accuracy and the smallest gap between training and testing. This largely reduces the 195 

degree of overfitting. In comparison, it can be found that the network model in this paper handles the best results. 196 

In order to more intuitively observe how good the improved PD-VGG model is, neural network performance 197 

metrics are used to judge it. The neural network performance metrics are the ones that can intuitively understand 198 

the performance of a model is good or bad, including accuracy, recall, precision, specificity, and F-measure value. 199 

They are all calculated based on the positive and negative samples in the sample data. 200 

Accuracy is how much the model judges correctly in all samples. The calculation is shown in equation 1. 201 

=
TP TN
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Accur

F P T
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N F N


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(1)202 

=
TP
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TP FN

(2)203 
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e l
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




+1
(5) 206 

Where, TP, FP, TN, and FN denote numbers of true positives, false positives, true negatives, and false negatives, 207 

respectively. Accuracy and F-measure are used to evaluate overall performance. F-measure is calculated so that 208 

α takes the value 1. 209 

Table 5 Fine-tuned performance parameters 210 

Types Accuracy Precision Recall Specificity F-measure

Deformation 0.996 1.0 0.979 1.0 0.989 

Journal of Pressure Vessel Technology. June 24, 2024;
Accepted manuscript posted September 28, 2024. 10.1115/1.4066676
Copyright (c) 2024 by ASME

Ac
ce

pt
ed

 M
an

us
cr

ip
t N

ot
 C

op
ye

di
te

d



9 

Misalignment 0.974 0.957 0.917 0.989 0.936 

Breakage 0.952 0.885 0.987 0.934 0.933 

Normal 0.974 1.0 0.891 1.0 0.942 

In the performance parameters of the various types of parameters is naturally closer to "1" the better, as can 211 

be seen in the table, almost all the performance parameters of the identification of the types of parameters tend 212 

to be close to 1, the best has been equal to 1, the performance of the worst indicators is only 0.891, and the ideal 213 

state of the difference of 0.109, but in general, the PD-VGG network model adapted to the of the PE gas pipe 214 

defect image dataset. 215 

216 

3 Research on image processing algorithm based on pipe defor-217 

mation 218 

By recognizing the images of PE gas pipelines, the basic classification of defect images is completed. In this 219 

paper, we have selected a kind of defects that need to distinguish the degree of damage and have a big impact on 220 

the life of the pipe - deformation defects, which refers to the appearance of polyethylene gas pipeline in the 221 

service process by the extrusion of external factors or ground settlement caused by the appearance of the change 222 

in morphology. The general observation of the degree of deformation is to compare the deformation ratio, i.e. the 223 

ratio of the deformed pipe diameter to the original pipe diameter. However, it is found that the environmental 224 

factors are not easy to extract the pipe diameter, so the deformation depth of the pipe will be used in the post-225 

processing to carry out the related research. 226 

227 

3.1 Graying of pipeline deformation defect images 228 

Color images can truly reflect the most realistic conditions inside the pipe at this moment, such as the pres-229 

ence of defects, color changes in the pipe body, and the size of pipe deformation. It can maximize the information 230 

of the acquired image in front of the technicians. However, color images contain a large amount of color infor-231 

mation and consume a lot of memory space for storage. The use of color images in the recognition process also 232 

affects the computing speed, which results in a decrease in processing speed. According to the actual situation of 233 

detection, the structural defect detection of PE gas pipeline only needs to be discriminated by the edge information 234 

of the pipeline and the gray scale change of the pipeline image, and the color information of the image will not 235 

play a decisive role. In this paper, there is no need to retain the color information while performing the recognition, 236 

but only need to know whether the edge information in the defective image of the pipeline and the gray scale 237 

information of the pixels in the image are drastically changed or not. Therefore, it is necessary to convert the 238 

color image into gray scale image. Generally, image graying is processed by component method, maximum value 239 

method, mean value method and weighted average method. Through comparison, this paper chooses the weighted 240 

average method to gray scale the image. Weighted average method according to the formula (6) for the three 241 

components of RGB weighted average can get a more reasonable grayscale image. Empirical formula is as fol-242 

lows, 243 

       , 0.299 , 0.578 , 0.114 ,Gray i j R i j G i j B i j      (6) 
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10 

All the above equations represent the grayscale value  ,Gray i j  at coordinate  ,i j ,  ,R i j d ,  ,G i j244 

and  ,B i j  represent the three color component luminance values of the pixel point, respectively.245 

246 
Fig. 8 Deformation defects of PE pipes 247 

248 

From the figure 8 we can see that the resultant images after processing of the component method are all 249 

relatively darker, the average method and the maximum value method perform similarly in the pipeline image, 250 

while the weighted average method better retains the details of the original image, and the information of the 251 

original image is more similar to that of the original image, in order to better carry out the following image 252 

processing, so in this paper, we will use the weighted average method as the algorithm for the grayscaling of the 253 

image. 254 

3.2 Gas pipeline image enhancement based on improved gamma correction 255 

The image enhancement process is to enhance the contrast between the defective part of the image and the 256 

background part, so that the pipeline defective image is more recognizable. As shown in figure 9, the following 257 

conclusions can be drawn after using the image enhancement algorithm. The histogram equalization image not 258 

only enhances the contrast between the background and the defects, but also highlights the noise in the figure, 259 

and the brightness of the equalized image is not uniform compared with the original defect image. The histogram 260 

equalization algorithm is unselective of pixel points when processing the image, which will enhance the noise 261 

intrusiveness after processing and cause unnecessary trouble to the subsequent feature extraction. Therefore, in 262 

this paper, histogram equalization will not be used to enhance the image. 263 
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264 
Fig.9 Comparison of image enhancement algorithms 265 

266 

The image enhanced using the improved gamma correction algorithm is shown in figure 9(d), from which 267 

it can be seen that there is no distortion in the defect picture after gamma correction. At the same time, the defects 268 

are more distinct from the background for better viewing. Moreover, the edges of the defects are more prominent, 269 

the difference with the background is greater, it becomes clearer, and the contrast between the background of the 270 

pipeline and the defects present in the pipeline is obvious. The improved gamma correction algorithm not only 271 

reconciles the uneven illumination of the original image but also suppresses the interference points that affect the 272 

recognition. Therefore, this paper decides to use improved gamma correction to enhance the contrast between the 273 

pipe background and pipe defects. 274 

3.3 Defect image blurring and edge detection 275 

In order to better extract the contour from the pipe defect image, for the pipeline internal image detection of 276 

the actual working conditions, in-depth comparative analysis, the results are shown in figure 10. Figure 10(a)~(f) 277 

are the original image, mean filter, box filter, Gaussian filter, median filter and bilateral filtering. From this figure, 278 

it can be seen that there are more impurities on the pipe wall, and there is some noise interference in the captured 279 

image, which will inevitably cause more or less influence and interference on the later deformation defect edge 280 

extraction. The median filter retains the details of the original image the best, and most of the details of the tube 281 

wall are retained, but this is not what is expected in this study. Linear filters such as Gaussian, while smoothing 282 

the impurity information of the pipe wall, are inferior to bilateral filters. The latter blurs out the unwanted inter-283 

ference by smoothing, yet retains the contour information of the deformation defects well. Bilateral filtering will 284 

be investigated in subsequent image processing work. 285 
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286 
Fig. 10 Comparison of Filtering Algorithms 287 

288 

After the initial screening and preprocessing of the acquired image, in order to subsequently calculate the 289 

amount of geometric features to be detected image and used for pattern recognition classification, the need for 290 

pipeline defects edge extraction. Due to the PE gas pipe internal smooth, so this time the prominent edge is a 291 

very important feature of the whole image, this feature for image segmentation and determine which type of 292 

defects provide an important basis. Generally in industrial vision, often used edge detection algorithms for Sobel, 293 

Scharr, Laplacian, Canny. based on the deformation of defective images, the effect of these types of edge detec-294 

tion algorithms are shown in figure 11. 295 

296 
Fig.11 Comparison of Edge Detection Algorithms 297 

298 

From the figure, it can be seen that the Sobel and Laplacian contour extraction is too diluted in the defor-299 

mation defect part of the contour relative to other operators, and the Scharr operator, although the defect contour 300 

is well preserved, retains too much interference from impurities in the pipe wall, which is not suitable for edge 301 

extraction. While Canny operator reflects the deformation contour better, compared with Scharr operator, the 302 

interference is removed more, but there are still more non-essential contours, so the later study will start from the 303 

direction of reducing the interference. 304 

After preliminary research, bilateral filtering and Canny operator is more suitable for PE gas pipeline defects 305 

contour extraction, bilateral filtering for edge retention is better, but interference, noise removal is not very com-306 

plete, however, the mean, box and other linear filtering for non-contour and other interference removal is very 307 

good, so try to double filtering to eliminate the interference of the pipe wall. Double filtering is to use the bilateral 308 
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filter as the base, and add another layer or even multiple layers of filters on this basis to realize better removal of 309 

interference noise. The specific effect of Canny edge detection of deformation defects after double filtering is 310 

shown in figure 12. 311 

312 
Fig.12 Canny edge detection after double filtering 313 

314 

From the figure, it can be clearly seen that the "Bilateral + Median" combination is the least ideal for the 315 

processing of interference, and the "Bilateral + Gaussian" and "Bilateral + Box" groups are relatively better, but 316 

some other non-defective contours are recognized as strong edges or weak edges with connections, and the re-317 

moval of the interference part is incomplete. Although the two groups of "Bilateral+Gaussian" and "Bilat-318 

eral+Box" are relatively better, some of the other non-defective contours are recognized as strong edges or weak 319 

edges with connections, and the interference part of the connectivity domain is larger, so the removal is incom-320 

plete. The combination of "bilateral + mean" is the best group for the deformation of the defective contours, the 321 

interference part of the removal of more and not a wide range of connectivity, the deformation of the defective 322 

contour part of the retention of the good, easy to carry out the later work. Double filtering is the best processing 323 

method for PE gas pipeline deformation defect contour detection, and finally the Canny edge detection with 324 

double filtering is chosen as the pre-deployment of edge extraction. 325 

3.4 Pipe deformation defect image contour extraction 326 

Canny edge detection can detect edges, but the detected edges are not a continuous whole. Contour extrac-327 

tion, on the other hand, can connect the needed edges into a whole for later computation. Two operators findCon-328 

tours and drawContours are used most in contour extraction, the former can find the existence of the contour 329 

information in the input image, the latter can find the contour information in a certain format to draw out. 330 

In this paper, we propose the top-contour algorithm, which compares the entire extracted contour to a nu-331 

merical value, traverses it and then sorts it by contour size to customize the interception of one or more contours. 332 

Because the current acquisition of deformation defects in the image edge detection after the defect edge contour 333 

in the whole image belongs to the largest or larger class, the output for a maximum contour as a top-contour 334 

traversal results, so that after a screening contour, that is, to save the energy of manually selecting the contour, 335 

but also to facilitate the direct drawing of the contour. In order to test the universality of this paper will be different 336 

environments under the PE gas pipeline deformation defects in the image of the corresponding contour extraction 337 

process, the specific processing results shown in figure 13 (a). Figure 13 (a) in a, b, c represents the deformation 338 

defect images taken in different environments, from 1 to 3 is the original input image, after double filtering and 339 

canny edge detection of the image (too clean and smooth pipeline is only a single layer of bilateral filtering), top-340 

contour algorithm processed image. As can be seen from the figure, for pipes that are not smooth and clean, such 341 
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as a1 and c1, there are still these unwanted interference and impurities in the contours of the image after double 342 

filtering and canny edge detection, but after using the top-contour algorithm to traverse all the detected contours 343 

in the image and extract the established maximal contour, the interferences due to the pipe wall or the quality of 344 

the image are all removed, and only the remaining Only the needed deformation defect contours are drawn by 345 

the drawContours operator, which not only saves the time of manually selecting the contours, but also facilitates 346 

the extraction of deformation defect contour feature values and operations at a later stage. 347 

348 
(a)                                                                                          (b) 349 

Fig. 13 Deformation defect contour extraction effect (a) and comparison of defective outer rectangular boxes 350 

(b) in different environments351 

352 

4 Defect feature extraction and calculation 353 

4.1 Deformation defect contour feature information extraction 354 

After the preliminary process, the contour of the pipe deformation defects has been extracted, in order to 355 

better observe the deformation condition of the defect contour, the next need to solve the problem is to extract 356 

the relevant information of the contour, in order to study the depth data of the deformation defects. In this paper, 357 

we use the method of contour fitting to approximate the defect contour by contour, and extract relevant feature 358 

information through the fitted contour. 359 

In this paper, a rectangular frame is chosen as the outer frame of the deformation defect contour. There are 360 

two specific methods of external connection, the first is the basic external rectangular frame, and the other is the 361 

minimum external rectangular frame. In this paper, the two methods are used in different environments and dif-362 

ferent deformation depths to try to calculate, as shown in figure 13 (b). 363 

364 
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365 
Fig.14 Comparison of the outer rectangular box of defects at different depths 366 

Figure 14 (a) to (d) are the images of the deformation defects at different depths (from 10mm to 40mm), 367 

and 1 to 3 are the original defects, the base outer rectangular box, and the minimum outer rectangular box, re-368 

spectively. 369 

From these two figures, it can be found that the minimum external rectangular box deflection angle formed 370 

by the defect contour at different depths in different environments is not much relative to the X-axis. The area 371 

and width of the rectangular box are increasing as the depth of the defect is getting larger and larger. The minimum 372 

outer rectangle is better suited to deformed defects though, and can be changed as the angle of the defect varies. 373 

One of the problems is that it needs to cycle through the angle calculations, which takes more running time 374 

compared to the base rectangular box. In this paper, a set of experiments was done to compare the area and 375 

runtime of the two rectangular boxes, as shown in figure 15. 376 

377 

378 
(a)                                                                              (b) 379 

Fig. 15 Comparison of area calculation (a) and runtime (b) of different algorithms 380 
381 

As shown in figure 15, this paper selected ten groups of test patterns, the data are averaged over many runs. 382 
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As can be seen from the figure, it can be seen that although the computation time of the minimum outer rectangle 383 

is more time-consuming than that of the rectangle without rotation, the time difference is within 9 milliseconds, 384 

which is within the acceptable range. Also the area enclosed by it is smaller than the latter value. For non-enclosed 385 

contours such as deformation defects, the smaller the enclosed area formed, the better, so the minimum outer 386 

rectangle algorithm is finally chosen as the contour fitting. 387 

4.2 Calculation of eigenvalues of defective contours 388 

After the contour fitting, the eigenvalues of the deformed defect contour and its fitted contour can be calcu-389 

lated, and its attribute features and enclosing object features are of great significance for describing the infor-390 

mation of the image, and this paper will carry out the calculation of the eigenvalues from several aspects. 391 

The area of minimum outer rectangle algorithm can be obtained from the return value, the larger the area, 392 

the greater the degree of deformation in the pixel case, and the same shooting distance of the target defect, as 393 

shown in equation 7, for the area of minimum outer rectangle algorithm, W is the width of the rectangle, H is the 394 

height. 395 

*WS W H (7) 396 

The area of the defect itself, which is calculated according to Green's formula (Type II curve integral), 397 

characterizes the connection and relationship between the curve C in the two-dimensional image with respect to 398 

the coordinate curve integral and the dual integral enclosed by that curve itself, as shown in equation 8. 399 

  
C

D

Q P
dA P dx Q dy

x y

 
  

   (8) 400 

For the perimeter of the defect, it is based on the L2 distance algorithm to find its perimeter, as shown in 401 

equation 9. 402 

1 1

0

( )( )

2

n
k k k k

k

x x y y
C  



 
 (9) 403 

Based on the deformation defects, the formation of minimum outer rectangle algorithm, its aspect ratio for 404 

the consideration of the depth of the defect is very important, the lower its value represents the depth of the deeper, 405 

proving that the pipeline due to deformation of the degree of damage is greater, and its calculation method is 406 

shown in equation 10, AR is the aspect ratio, W is the width, H is the height. 407 

= /AR W H (10) 408 

Extend is a commonly used value for contour features, representing the ratio of the area of the target contour 409 

and the area of the outer boundary, calculated as shown in equation 11, for the area of the contour itself, for the 410 

area of the outer contour. 411 

T

W

S
Extend

S
 (11) 412 

In this paper, twenty images with a shooting spacing of about 30cm were selected, whose defect depths 413 
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varied from 10mm to 50mm, and the relevant calculations were performed on the image contours. At the same 414 

time, the values were averaged to observe how the eigenvalues differed at different depths, as shown in table 6, 415 

where the units of area and perimeter are pixels. 416 

Table 6 Eigenvalues of deformation defects at different depths 417 

Depth AR  Minimum External Rectangular 

Area 

Cycle length Extend 

10mm 33.28 412.36 229.58 9.416e-4 

20mm 18.36 1893.30 333.48 4.76e-3 

30mm 7.72 4007.28 419.54 6.52e-3 

40mm 5.60 7193.88 460.17 8.14e-3 

50mm 4.52 10805.24 539.62 1.36e-2 

In order to better observe the relationship between different deformation defects and the feature information 418 

of their own contours and outer rectangular boundaries, a line graph of their relationship is plotted, as shown in 419 

figure 16. 420 

421 
(a)       (b) 422 

423 
(c)                                                                                                 (d) 424 

Fig. 16 Comparison of eigenvalues of deformation defects for different depth cases 425 

426 

From Figure 16, it can be seen that as the depth continues to deepen, its width-to-height ratio shows a down-427 

ward trend, the most serious decline in the depth of 30mm, proving that in this case, the deformation defects of 428 

the degree of damage is very large, and there may be the phenomenon of yielding of the pressurized portion of 429 
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the region; and minimum outer rectangle algorithm and contour perimeter shows a rising trend, Extend is also 430 

the same, but the growth trend of the trend in the point of passing through the 30mm from a slow change to a 431 

steeper, and the results proved that deformation defects are more obvious in the change at about 30mm, but to be 432 

further investigated. 433 

5 Conclusion 434 

In this paper, an image processing method is used to conduct an in-depth study on the image defect recog-435 

nition and feature detection algorithm, and a set of algorithms applicable to PE gas pipeline defect detection is 436 

proposed. The following conclusions are drawn: based on the built image acquisition system and the constructed 437 

image library, the improved CNN model is used to recognize and classify the defective images of PE gas pipelines. 438 

The data set of specific defects of gas pipeline is established, and data augmentation is carried out, and PD-VGG 439 

is used for migration learning and freezing network layer to complete the model building. Finally, the parameter 440 

optimization is carried out for several model parameters to improve the accuracy of the training model, which 441 

proves the applicability of the model to the defective images of gas pipelines. OpenCV-Python is utilized to write 442 

algorithms for related image processing. Through the noise analysis of PE gas pipeline defects, the image is first 443 

grayscaled by the weighted average method, then the contrast is enhanced by gamma correction, and finally the 444 

double filtering method is used to remove the influence of noise on the subsequent steps. Edge detection for 445 

deformed defect images was accomplished using Canny operator. In contour extraction, it was found to be too 446 

cumbersome to find the desired contour, and the top-contour algorithm was used to complete the filtering between 447 

the deformed defective contour and the interfering contour. 448 
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