

OITL Aqualiner

ITL Aqualiner, with a hydrostatic head of up to 50 metres, is a waterproof concrete liner. It comprises a flexible polymer-cementitious coating bonded to a geofabric material.

ITL Aqualiner is manufactured in Australia and is delivered to site ready to install – no need for hydration.

ITL Aqualiner has excellent mechanical properties, is flexible, durable, robust, and self-extinguishing (will not sustain fire – passes UL94).

Importantly, the geofabric incorporated in the liner design has strong multi-axial properties and excellent elongation, allowing ITL Aqualiner to be laid successfully over potentially damaging sub-grades.

ITL Aqualiner can be maintained, repaired and modified throughout its service life

(50+ years) without specialist labour or equipment. ITL Aqualiner resists mechanical, human and fauna traffic.

Potential applications include:

- lining irrigation channels
- civil engineering, including erosion control, culverts and embankments, beeching capping
- dam lining, including those with rocky substrates
- agricultural dams, stock races and stockyard lining
- flood gates and flood mitigation
- certified AS4020 for potable water applications.

Property	Test Method	Result	Comments
Hydrostatic Head	Wacker Test	Passed 50m waterhead	Ability to hold a large head of water.
Thickness Measure	AS 2001.2.15A	Mean Thickness: 2.26mm	Thickness dictates performance criteria such as its
			tear resistance, puncture resistance and resistance
			to installation damage.
Mass Per Unit Area	AS2001.2.13	1070g/sq m	Determined by weighing a unit area of a
			geomembrane and dividing mass by unit area
			measured.
Flex Resistance	AS 4878.9 Part B	No deterioration, cracking or	Tests the dynamic flex performance of coated fabrics,
		delamination	ie damage by repeated flexing.
Taber Abrasion	ASTM D3389	1000gm/500 revs	Determination of the wear resistance of fabrics
		Mass Loss: 1.18mg per rev	coated with rubber or plastics to abrasion.
			The abrasion is measured by mass loss or number
			of cycles required to wear (ASTM).
Peel Adhesion	ASTM D 751	Mean: 53.6 N/25mm	The force required to peel the coating from the base
		Std Dev: 9.3N/25mm	fabric. This test relates to the ability of the coating
			to adhere to the base fabric. Good coating adhesion
			is important in preventing delamination of the coating
			compound, a prerequisite for join strength.
			Delamination will result in leakage through the liner
			or join and promote premature failure.
CBR Burst Strength	AS 3706.4	Mean: 3760.0 NM	This is used as a measure to judge the resistance
	(simulate cattle hoof intrusion)	Displacement: 51.1	of the liner to puncture forces, and a measure of
			multi-directional strength.
Small Scale Puncture Test	ASTM D4833	Mean: 715.0 Newton	Puncture resistance is important when the liner is
	(kangaroo paw test)	Std Dev: 21.0 Newton	installed under onerous conditions, ie on a subgrade
			of stones etc.
			Small scale test and difficult to relate to field
			performance.
Large Scale Puncture Test	ASTM D5514	50 psi (345kpa) for 14 hours	Test developed to more closely simulate field
		No puncture experienced.	conditions.
Grab Tensile	AS2001.2.3.2	Mean Max Force NMD:1232	Determination of maximum force using grab method.
	(to simulate down drag on liner)	TD:1887	The grab method is used to determine effective
		Max Force Std Dev NMD:112	strength or break strength.
		TD:85	
Strip Tensile	ASTM D 751	Mean: 488N/25mm	Tensile tests measure the force required to break a
		Std Dev: 24.0N/25mm	specimen and the extent to which the specimen
		Mean: 547.0/25mm	stretches or elongates to that breaking point.
		Std Dev: 42.0N/25mm	Tensile tests produce a stress-strain curve, which
		Elongation: Mean 24.88%	can be used to determine tensile modulus.
		Std Dev: 1.5%	
Multi-Axial Testing	ASTM D5617	Pressure at rupture: 15.1psi	Multi-axial testing is designed to simulate in-service
	Trapezoidal Tear	Strain at rupture: 34.9%	stress conditions where there is stress on the liner
	AS 3706.3	Mean: 350.0 Newton	from multiple directions. The test best simulates
	(resistance to tearing)	Std Dev: 32 Newton	those out-of-plane stresses and strains that liners
		Mean: 466.0 Newton	experience in the field.
		Std Dev: 40 Newton	The tear test propagates from an initial cut, mimics
			the loading on a liner damaged during installation.

Standard Roll Dimensions: Length/width/liner thickness/dia 50m/2.2m/2mm/0.41m Roll Weight: Approximately 159kg

