Presented by Brian Baumgarten Materials Engineer TSC, Materials & Corrosion Laboratory bbaumgarten@usbr.gov 303-445-2399

Introduction to Geosynthetics

BUREAU OF —

RECLAMATION

What are Geosynthetics?

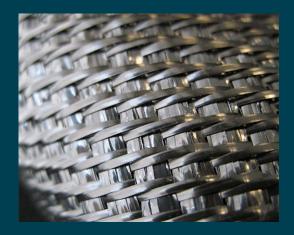
Geo = earth Synthetic = human made

Geosynthetics = human made materials (polymers) used with soil, rock, earth or other geotechnical materials as an essential part of a project, structure or system.

Types & Functions

Туре	Separation	Reinforcement	Filtration	Drainage	Containment
Geotextiles	Х	x	Х	X	
Geogrid		X			
Geonet				Х	
Geomembrane					Х
GCL					Х
Geofoam	x				
Geocell	х	X			
Geocomposite	Х	X	X	Х	Х

Geotextiles


Two Types

<u>Woven</u>

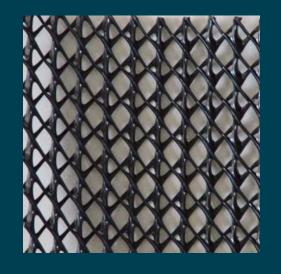
- Used for separation, reinforcement and drainage.
- Used with pavement, roads, railroads, structures, and rip rap.
- Strength is support, stabilization, and drainage to prevent erosion and or collapsing of the ground around a road, railroad, etc.

<u>Nonwoven</u>

- Used for separation, reinforcement, and filtration.
- Used with drains, geomembranes, aggregate
- Reclamation mainly uses as a cushion to protect geomembranes from being punctured by aggregate, the subgrade, etc.

Geomembranes

- Function: contain liquids or gases. Reclamation uses geomembranes in canals, ponds, reservoirs, dam faces, and roof tops to prevent water from seeping into unwanted areas.
- The primary makeup of most Geomembranes is any of the following polymers.
 - ➢ HDPE, LLDPE, PP, PVC, CSPE, or EPDM
- Additives are used to improve properties required for durability, UV exposure, etc.
 - Carbon Black is a pigment that is used for UV stabilization.
 - Plasticizers impart flexibility to prevent punctures and tears
 - Biocides to kill organic material



Geonet

- Geonets are grid like materials consisting of parallel sets of ribs overlaying other parallel sets of ribs at various angles. They are often sandwiched between GT's.
- The function of a geonet is to laterally drain liquids or gases within the plane of the material.
 - Example used under sports fields or putting greens to prevent sitting water.
- Two main types of geonets used.
 - Triplanar these types are used whenever drainage is required under high loads.
 - Biplanar these types of geonets are used to transport large fluid or gas flows under very minimal loads such as leak detection layers in ponds

Geocell

- Geocells are a three-dimensional structure much like a honeycomb that is meant to be filled with aggregate, soil, etc. (See images to the right)
- Function
 - > Separation
 - Reinforcement
 - > Both
- Reclamation has used these to retain a coble/gravel mixture on the side slope of a detention pond to protect the underlying geomembrane liner from UV degradation and mechanical damage.
- Primary Use
 - Reclamation : canals and ponds
 - Soil stabilization, erosion control, and structural reinforcement for load support

Geosynthetic Clay Liner

- Geosynthetic Clay Liners (GCL's) are hydraulic barriers that generally consist of bentonite clay sandwiched between two geotextiles or geomembranes.
- GCL's are primarily used in landfill applications in place of compacted clay (CC) liners or geomembranes.
 - Fast + Easy to Install
 - Very low conductivity, swell to 15 times size when hydrated.
 - Self healing up to 70 mm holes.
 - Low cost when CC is not available.
 - > Maximize capacity compared to CC
- Reclamation has used GCL's in canals and ponds.
 - > 12 in min. soil cover to provide seal
 - Soil cover sloughs from side slopes
 - Cover significantly reduces capacity

Geogrids/Geofoam

Geogrids

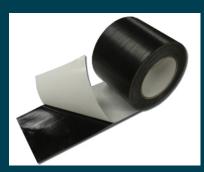
- Geogrids are used to reinforce soils or other materials.
 - Retaining walls
 - > Side slopes
 - Reinforce soils or other base materials below roads or other structures.

<u>Geofoam</u>

- Geofoam is large blocks of expanded polystyrene (EPS).
 - Slope stabilizer
 - Retaining wall backfill
 - Road embankments
 - Pavement insulation

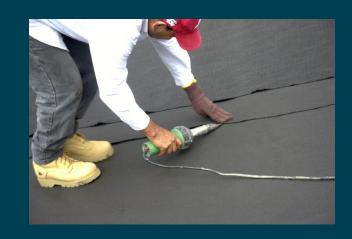
Geocomposite

- Geocomposite a combination of any of the previous discussed geosynthetic materials.
- The goal of a geocomposite is to combine the best properties of the different types of materials to find an optimal low-cost solution to a specific problem.
 - Geocomposite can provide separation, reinforcement, filtration, drainage, and containment.
- Geocomposite Examples
 - Geotextile-Geonet Geocomposite
 - Geotextile-Geomembrane
 Geocomposite
 - Geomembrane-GeogridGeocomposite
 - Geotextile-Geogrid Geocomposite



Repair Techniques

- Geomembranes
 - Heat Welder more economical in most situations and creates strong bond.
 - Adhesive messy
 - Adhesive Tape strong bond, pipe boots



Repair Techniques

Geotextiles

- Heat Welder preferred method that creates strongest bond.
- Stitching must be used in wet weather as welding won't work.

Degradation Mechanisms

- Any mechanism that causes chain scission, bond breaking, loss of additives, extraction, or mechanical damage will lead to degradation.
 - > UV light
 - Radioactive
 - Biological (animals, fungi or bacteria)
 - Chemical
 - Thermal (expansion and contraction)
 - Oxidative
 - > Ozone
 - Vandalism

Canal Lining Research

Project Scope

Research Question

- Canal Lining Demonstration Project began in 1991 (6 reports between 1991 and 2001).
- ➢Goal was to study non-traditional liners in canals with high seepage rates (35-50%).
- Current question: how are the test sections performing after up to 25 years of service?
- Team & Partners
 - >Jay Swihart & Mike Walsh (BOR)
 - ≻George Koerner (GRI)

Project Approach

- Test Sections (Arnold, North, and Ochoco)
 - >24 test sections installed 1991 to 2001
 - >7 test sections removed from the study
- Report
 - ➢ Failure analysis (7 test sections)
 - Condition Assessment (17 test sections)
 - Sample Coupon Testing (GRI)
 - Correlation between properties and performance
 - >Benefit/Cost Analysis

Project Results • Exposed Geomembrane

• Advantages

- Can be durable(25+ years)
 - Low cost
 - Initial construction
- Effectiveness (90%)

Disadvantages

- Maintenance
 - Difficult
 - Higher cost
- Service conditions
 - Soil migration
 - Liner Uplift + whales
 - Capacity reductions
 - ➢ Varying B/C ratio

Project Results

Concrete (reinforced & unreinforced)

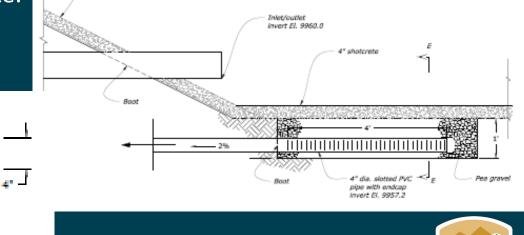
- Advantages
 - Durable (50 years)
 - Maintenance
 - Low cost
 - Easy
 - Prevent
 - Soil migration
 - > Canal failure
- Disadvantages
 - Low effectiveness (seepage reduction)
 - estimated 70%
 - Fairly Expensive

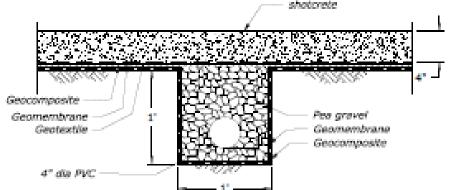
Project Results• Concrete over Geomembrane

• Advantages

- Durable (50 years)
- Effective (95%)
- Maintenance
 - Easy
 - Low cost
- Prevent
 - Soil migration
 - Liner degradation
 - ➤ Liner uplift
 - > Canal failure
- Disadvantages
 - Expensive

Project Results

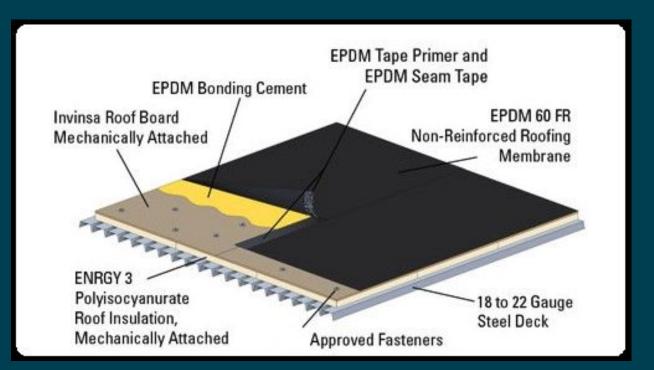

Liner Type	Durability (years)	Effectiveness (%)	Maintenance (\$/ft2·yr)	B/C Ratio
Concrete	50	70	0.005	3.0-3.3
Concrete over Geomembrane	50	95	0.005	3.5-3.7
Exposed Geomembrane	15-30	90	0.010	2.2-3.8


 Concrete over geomembrane provides consistently high B/C ratio and highest effectiveness (main goal).

WTP Detention Pond

- This slide is intended to highlight how geosynthetics can be used in conjunction with each other.
- The following liner system is being used in a water treatment plant detention pond. The pond is utilized as a storage pond in case the plant is at capacity, there is down time for maintenance, exit streams are dropping in quality for an unknown reason, etc.
- From top to bottom 1. Shotcrete cover 2. Geotextile 3. Geomembrane 4. Geotextile-Geonet Geocomposite Leak Detection Layer 5. Geomembrane 6. Geotextile-Geonet Geocomposite.

Dam Seepage Reduction


- Using geosynthetic materials to reduce seepage through the face of a dam.
- This dam is made from steel plates coated with a protective paint.
- Problems that have arisen.
 - Corrosion of the steel face
 - Movement and heaving of the steel plates
 - > Cracking
- This solution utilizes batten strips as well as a proprietary technology to tension the material down to the face of the dam. Wind is obviously a concern in an application like this where in a canal it wouldn't be as much of an issue.

Elevator Shaft Roof Repair

- Reclamation is involved in roof repair projects that involve finding a waterproof and weatherproof solution to roofing. This project involved fixing a leaky roof over the top an elevator shaft in a hydroelectric plant.
- EPDM is often used as it is very weatherproof, durable and flexible at both high and low temperatures.

Thank you! Questions?

bbaumgarten@usbr.gov

— BUREAU OF — RECLAMATION

Materials and Corrosion Laboratory Staff - 8540

Cathodic Protection

- Chrissy Henderson, Ph.D. chenderson@usbr.gov
- 303-445-2348

<u>Matt Jermyn</u> mjermyn@usbr.gov 303-445-2317

Daryl Little, Ph.D. dlittle@usbr.gov 303-445-2384

David Tordonato, Ph.D., P.E. dtordonato@usbr.gov 303-445-2394

Grace Weber

GWeber@usbr.gov 303-445-2327

Hazardous Materials

Lise Pederson, P.E. lpederson@usbr.gov 303-445-3095

Kevin Kelly, Ph.D KKelly@usbr.gov 303-445-7944

Group Manager

Jessica Torrey, Ph.D., P.E. jtorrey@usbr.gov 303-445-2376

Protective Coatings

Brian Baumgarten bbaumgarten@usbr.gov 303-445-2399

> <u>Carter Gulsvig</u> cgulsvig@usbr.gov 303-445-2329

Bobbi Jo Merten, Ph.D. bmerten@usbr.gov 303-445-2380

> Rick Pepin, PCS rpepin@usbr.gov 303-445-2391

Stephanie Prochaska sprochaska@usbr.gov 303-445-2323

Allen Skaja, Ph.D., PCS askaja@usbr.gov 303-445-2396

