

Robert H. Swan, Jr. Drexel University rhs53@drexel.edu

Timothy D. Stark, Ph.D., P.E.

University of Illinois at Urbana-Champaign tstark@Illinois.edu

Fabricated Geomembrane Institute Webinar Series – 2019 Webinar #3

Outline of Presentation

- Introduction to multi-layer interface shear testing
- Importance of simulating field conditions
- Insight and reasoning on using multi-layer testing
- Preparation of test specimens and direct shear box
- Interruption of multi-layer test results
- Discussion of Pros and Cons of multi-layer testing
- Review of Case Studies
- Questions

What Are We Talking About?

Single Interface

Multiple Interfaces

- Interface direct shear testing is a performance test.
- Used to develop test data used in design of:
 - > lined slopes
 - > cover systems
 - > other geotechnical structures with soil/geosynthetic interaction.
- Test conditions used in performing these tests must closely model anticipated field conditions.

- Typical conditions that are modeled include:
 - > Site specific soils materials (compaction γ_d and w_c)
 - Site specific geosynthetic materials
 - Normal stress range
 - > Wetted conditions
 - > Hydration and/or Consolidation conditions
- With multi-layer interface shear testing one can:
 - Model normal stress transfer through geosynthetics and soils
 - Model shear stress transferred through geosynthetics and soils
 - Model complete lining system of interest

- Single interface tests are restrained (coupled) tests.
 - Typically measure higher peak shear strengths due to tension within geosynthetic components.
 - Allow more combing (strain softening) causing lower large displacement strengths.

Typical Single Interface Shear Test Configuration

After Koerner (1998)

Typical Test Results Single Interface Shear Test Series

May require numerous single interface tests to determine critical interface for a design.

8/50

When conducting a multiple layer interface shear test:

- Once system begins to shear (fail), shear stress gets transferred within system
- Little to no tension developed within layers.

A Typical Multi-Layer Interface Shear Test Configuration

Typical Test Results Multiple Interface Shear Test Series

- Soils prepared to requested w_c and (γ_d) .
- Compacted to represent construction of lining system.
- If a clayey soil will underly geosynthetics, clayey soil should not be compacted directly on geosynthetic.
- Soil should be compacted away from interface and then placed on interface.
- This will prevent:
 - > Build up of compaction stresses and pore water pressures at interface
 - > Embedment of soil into geosynthetic

- Geosynthetics will not be attached to either of shear box components
- Each geosynthetic should be trimmed larger than shear box.
- Typically, geosynthetic specimens cut to approx.15 inches in shear direction and 13 inches in width.
- Geosynthetics should be condition as per requested test conditions.

- For multi-layer interface shear tests larger lower shear box should be sectioned down to a 12 in. by 12 in. shear area.
- Place less compressible soil (sand or gravel) in lower shear box
- Place more compressible soil (clayey soil) in upper shear box.
- If this is done, compact soil to represent orientation and placement in field.

- Configuration of Shear Box:
 - > Place and compact soil in lower shear box
 - Place oversized individual geosynthetic layers in correct orientation to represent placement in field:
 - Use "Tail Tell" wires attached to rear of each geosynthetic layer to determine movement (shear displacement) of each layer.
 - Place and compact soil in upper shear box.
- Continue with rest of direct shear box setup similar to a single interface test, apply normal stress and initiate shearing phase.

Some Typical Published Single Interface Direct Shear Test Data

Interface	ϕ_{peak}	(Eff.) ¹	ϕ_{res}
Sand – nonwoven geotextile (GTX)	26º - 35º	(90-100%)	20° – 30°
Sand – HDPE geomembrane (GM)	17º – 30º	(55-80%)	17º – 30º
Clay – smooth GM	8° – 12°		6° – 10°
Clay – textured GM	12º – 24º		6° – 20°
Smooth GM – nonwoven GTX	6º – 15º		4° – 12°
Textured GM – nonwoven GTX	24° – 35°		6° – 12°
Textured GM – reinforced hydrated GCL ²	10° – 30°		6° – 18°
Unreinforced hydrated GCL ³	17º – 30º		4° – 6°
GM – geonet ⁴	10° – 14°	-	8° – 10°

Notes:

- 1. Eff. = Interface Efficiency = $[tan\phi_{interface} / tan\phi_{soil}]$ or $[(S_u)_{interface} / (S_u)_{soil}]$
- 2. Failure plane may be internal (within GCL) at higher normal stresses
- 3. Failure plane is internal (within GCL)
- 4. Strength may be slightly lower with textured geomembrane than smooth

After Kavazanjian (2007)

Let's Consider an Example Simple Lining System

Material / Interfaces Of Concern

- Internal Strength of Wetted Sand
- Wetted Sand Against DSGC
- Wetted DSGC Against Textured HDPE Geomembrane
- Textured HDPE Geomembrane Against Wetted Clay
- Compacted Clay

17/50

ך ל

TYPICAL SINGLE INTERFACE TEST RESULTS

	Sand	Sand / DS GC	DS GC / TXT GM	TXT GM / Clay	Clay
Normal Stress	Peak Shear Stress	Peak Shear Stress	Peak Shear Stress	Peak Shear Stress	Peak Shear Stress
200	125	121	439	290	473
500	312	281	573	387	582
2500	1562	1344	1463	1037	1310
5000	3124	2674	2576	1850	2220
10000	6249	5332	4802	4802 3474	
Shear Strength	c = 0 nsf	a = 15 nsf	a = 350 nsf	a = 225	c = 400 psf
Parameters $\Phi = 32 \text{ deg}$		$\delta = 28 \text{ deg}$	$\delta = 24 \text{ deg}$	$\delta = 18 \text{ deg}$	$\Phi = 20 \text{ deg}$
	Sand	Sand / DS GC	DS GC / TXT GM	TXT GM / Clay	Clay
Normal Stress	LD Shear Stress	LD Shear Stress	LD Shear Stress	LD Shear Stress	LD Shear Stress
200	115	108	257	165	273
500	289	248	343	262	382
2500	1443	1181	917	912	1110
5000	2887	2347	1634	1725	2020
10000	5774	4678	3067	3349	3840
Shear Strength	c = 0 nsf	a = 15 nsf	a = 200 nsf	a = 100	c = 200 nsf
Baramotors	$\Phi = 30 \text{ dog}$	$\delta = 25 \text{ dog}$	$\delta = 16 \text{ dog}$	$\delta = 100$	$\Phi = 200 \text{ psr}$
Falalleteis	$\Psi = 50 \text{ ucg}$	0 - 25 068	0 - 10 068	0 - 10 ueg	$\Psi = 20 \text{ deg}$

FGI Fabricated Geomembrane Institute

TYPICAL SINGLE AND MULTIPLE INTERFACE TEST RESULTS

	Sand	Sand / DS GC	DS GC / TXT GM	TXT GM / Clay	Clay	Multiple Interfaces
Normal Stress	Peak Shear Stress	Peak Shear Stress	Peak Shear Stress	Peak Shear Stress	Peak Shear Stress	Minimum Peak Shear Stress
200	125	121	439	290	473	121
500	312	281	573	387	582	281
2500	1562	1344	1463	1037	1310	1037
5000	3124	2674	2576	1850	2220	1850
10000	6249	5332	4802	3474	4040	3474
Shear Strength	c = 0 psf	a = 15 psf	a = 350 psf	a = 225	c = 400 psf	a = 120
Parameters	Φ = 32 deg	δ = 28 deg	δ = 24 deg	δ = 18 deg	Φ = 20 deg	δ = 19 deg
	Sand	Sand / DS GC	DS GC / TXT GM	TXT GM / Clay	Clay	Multiple Interfaces
Normal Stress	LD Shear Stress	LD Shear Stress	LD Shear Stress	LD Shear Stress	LD Shear Stress	Minimum LD Shear Stress
200	115	108	257	165	273	108
500	289	248	343	262	382	248
2500	1443	1181	917	912	1110	912
5000	2887	2347	1634	1725	2020	1634
10000	5774	4678	3067	3349	3840	3067
Shear Strength	c = 0 psf	a = 15 psf	a = 200 psf	a = 100	c = 200 psf	a = 105
Parameters	Φ = 30 deg	δ = 25 deg	δ = 16 deg	δ = 18 deg	Φ = 20 deg	δ = 17 deg

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

22/50

ך ל

- Ability to analyze a complete system (i.e., clay liner to protection layer).
- See how failure plane shifts as a function of normal stress.
- Failure will occur at weakest interface / internal
- Good for CQA/CQC testing.
- Finding minimum shear strength.
- Typically produces lower peak and higher large displacement strengths.
- Allows quick evaluation of many materials.
- Better simulates field conditions.

- Sometimes difficult to see which plane is failing first.
- Peak shear strength may occur on one plane and large displacement strength may develop on an other plane.
- To get specific shear strength for an interface may require additional testing
- Can be difficult to conduct with a lot of materials.
- Sometimes difficult to analyze.
- Need a well trained technician to conduct testing with good peer review.

24/50

- Shenthan, Khilnani, and Stark (2019)
- Data Reviewed for 9 Sites (14 Projects)
- 82 Tests w/3 to 5 Normal Stresses
- 305 Data Points
- Divided into 4 Categories:
 - > DST GM/GCL/DST GM (Encapsulated GCL)
 - For encapsulated GCL, Water Boards require average of soaked and unsoaked GCL strength
 - > DST GM/GCL/Subgrade (Unencapsulated GCL)
 - > DST GM/CSL (no GCL) Subtitle D liner
 - > **SST GM** on GCL and Overlain by **GT** or GC (for Side Slope Liner)

• Stark and Poeppel (1994)

• Design #1

FGI

Institut

Peak interface strength on base/nonsloped & Residual on sideslopes & Design with $FS \ge 1.5$

Design #2
 Residual interface strength on sideslopes & base & FS ≥ 1.0
 (1.1 if Direct Shear => Stark and Choi, 2004, Geosyn. Intl., December, pp. 491-498)

• Design #3 If permanent deformations on base/nonsloped (seismic), Residual Everywhere

Swan & Stark -Webinar: Multi-Layer Interface

Bottom Liner Design Strengths

26/50

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

FGI

Fabricated Geomembrane Institute

Ι

27/50

- From Shenthan et al. (2019)
- 5 Projects
- LD Shear Strength: Stress Dependent Bottom Liner System: DST GM/Encapsulated GCL Hydrated: 9.0 to 12.4^o v. Unhydrated: 13.1 to 16.2^o

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

- From Shenthan et al. (2019)
- 5 Projects
- LD Shear Strength: Stress Dependent Bottom Liner System: DST GM/Unencapsulated GCL on Subgrade (hydrated) Hydrated: 11.9 to 14.8⁰

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

- From Shenthan et al. (2019)
- 5 Projects
- LD Shear Strength: Stress Dependent Bottom Liner System: DST GM/CSL As Compacted: 18.3 to 20.2⁰

29/50

) נ

30/50

- From Shenthan et al. (2019)
- 5 Projects
- LD Shear Strength: Stress Dependent Sideslope Liner System: GT/GM-SM/GM-TX/hydrated GCL As Compacted: 8.5 to 9.0°

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

Summary of Multi-Interface LD Database

From Shenthan et al. (2019)

Institut

 Table 1. LD Shear Strengths and Secant Friction Angles based on Best-Fit Strength Envelopes

	Category (a) - Encapsula Hydrated Unhydrated			lated GCL Avg. Hyd./Unhy.		Category (b) - Unencapsulated GCL Hydrated		Category (c) - No GCL (GM on CSL) -		Category (d) - SST GM/GT (Side Slope) -		
	$ au_{LD}$	Φ_{sec}	$ au_{LD}$	Φ_{sec}	$ au_{LD}$	$\Phi_{\sf sec}$	$ au_{LD}$	$\Phi_{\sf sec}$	$ au_{LD}$	Φ_{sec}	$ au_{LD}$	Φ_{sec}
а	1.4038	-	0.9966	-	-		0.9321	-	0.6898	-	0.2262	-
Ь	0.7017		0.8012	-	-	-	0.7971	i k	0.8991	-	0.9428	-
σ												
100	36	19.6	40	21.7	38	20.7	37	20.1	43	23.4	17	9.9
500	110	12.4	145	16.2	127	14.3	132	14.8	184	20.2	79	9.0
1000	179	10.1	252	14.2	216	12.2	229	12.9	344	19.0	152	8.7
1500	238	9.0	349	13.1	293	11.1	317	11.9	495	18.3	223	8.5

Note: σ and τ_{LD} are in kPa and Φ_{sec} in degrees

Shenthan, T., Khilnani, K., and Stark, T.D. "Case Histories of Multi-Layer Interface Tests for Composite Liners and Comparison to Single Interface Tests," *Proceedings of Specialty Conf. GEO-CONGRESS 2019*, ASCE, Philadelphia, PA, March, 2019, Geotechnical Special Publication, pp. 42-51.

FGI Comparison of Single vs. Multi-Interface Test Results

- From Shenthan et al. (2019)
- Bottom Liner System #1:
- Bottom Liner System #2:
- Excellent agreement with comparison of Peak Strength Envelopes
- Focus on LD Strength Envelopes

1 of 3

32/50

FGI Test Results Commentated Institute

• From Shenthan et al. (2019)

1 of 3

33/50

- Bottom Liner System #1: Granular Drainage Media/GT/DST GM/GCL/DST GM/Subgrade
- LD Good Agreement
- Encapsulated GCL Unhydrated (Failure on GCL/DST GM or DST GM/GT)
- Multi LD a little higher
- Encapsulated GCL Hydrated (Failure on GCL/DST GM)

FGI
Generatized
InstituteComparison of Single vs. Multi-Interface TestFabricated
InstituteComparison of Single vs. Multi-Interface TestFabricated
InstituteT

- From Shenthan et al. (2019)
 - Bottom Liner System #2: Granular Drainage Material/DST GM/GCL/Subgrade
 - Excellent Agreement
 - Unencapsulated GCL-Hydrated (Failure on GCL/DST GM)

- Excellent Agreement
- Unencapsulated GCL-Hydrated (Failure on DST GM/GC)

FGI
GenerationComparison of Single vs. Multi-Interface TestResultsI

- From Shenthan et al. (2019)
- Sideslope Liner System #2: Cover Soil/GC/DST GM/Subgrade
- No GCL

- Excellent Agreement
 - **GT/DST GM**

(Failure on GT/DST GM)

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

3 of 3 (New Data)

• Multi-Layer Tests require greater shear displacement?

- Subgrade Soil/GCL => Subgrade & Sand
- GCL/GM-TX => Sand & Sand
- DS GDC/GM-TX => Sand & Sand

Comparison of Single and Multi-layer Tests

37/50

Ι

• Subgrade Soil/GCL/GM-TX/LCRS Gravel => Subgrade & Gravel

FGI

Fabricated Geomembrane Institute

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

Comparison of Single and Multi-layer Tests

38/50

Ι

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

FGI

Fabricated Geomembrand Institute FGI Eabricated Geomembrane Institute
Comparison of Single and Multi-layer Tests

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

Comparison of Single and Multi-layer Tests

40/50

][

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

FGI

Fabricated Geomembrane Institute Comparison of Single and Multi-layer Tests

41/50

Ι

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

FGI

Fabricated Geomembrane Institute

Peak = good agreement

Institute

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

Stark et al. (2015)

LD Comparison of Single and Multi-layer

LD – Single is lower

FGI

Fabricated Geomembrane Institute

Swan & Stark - Webinar: Multi-Layer Interface Shear Testing © 2019

Stark et al. (2015)

- From Shenthan et al., (2019)
- Multi-interface data from 305 tests and comparison w/ 3 single interface tests

44/50

- Excellent agreement between Single & Multi-interface tests
 - Same Peak Strength Envelopes
 - > Weakest interface at same normal stress
 - LD strengths in good to excellent agreement
- Multi-interface results reliable and repeatable
- Eliminate issues w/clamping in single tests
- Represents actual field conditions
- Only 1 test per liner system configuration vs. 3 or 4 single interfaces
- Should develop an ASTM standard for multi-interface tests

Recommendations

- Use different Design Strength Envelopes for Sideslope and Base Liner Systems - different configurations, normal stresses, & strengths
- If Single Interface Tests specified, use Multi-Layer Tests to verify Combination Strength Envelope
- If anomaly with Multi-Layer Test, conduct relevant single interface tests
- If Single Interface Tests specified, require strength envelope NOT a specified strength but should be defined as interface with lowest peak strength
- Specified strength should be a strength envelope not individual values for each interface

Contact Information

Robert H. Swan, Jr.

Associate Teaching Professor Department of Civil, Architectural and Environmental Engineering Drexel University

rhs53@Drexel.edu

Timothy D. Stark

Professor of Civil & Environmental Engineering University of Illinois at Urbana-Champaign Technical Director Fabricated Geomembrane Institute tstark@Illinois.edu

Andy Durham FGI Member GMA Executive Council Owens Corning andy.durham@owenscorning.com

Jen Miller

Coordinator Fabricated Geomembrane Institute University of Illinois at Urbana-Champaign fabricatedgeomembrane@gmail.com

Check out FGI's Website:

- Latest Specifications and Guidelines
- Installation Detail Drawings (PDF and DWG)
- Technical Papers and Journal Articles
- Webinar Library (available to view and download)
- ASTM Test Method Videos
- Pond Leakage Calculator
- Industry Events Calendar
- Photo Gallery
- Member Directory
- Material and Equipment Guides
- Industry News

www.fabricatedgeomembrane.com

- January 22 Geosynthetic Interface Shear Testing Rob Swan
- February 28 GCL Shear Testing Chris Bareither
- April 9 Multi-Layer Shear Testing and Results Swan & Stark
- May 21 Geofoam for Roadway Applications Steve Bartlett
- June 25 Geosynthetics for Coal Combustion Residuals (CCRs)
- August 6 CCR Policy and Regulations
- September 10 Geosynthetics for Shale Oil and Gas Ponds
- October 15 Lightweight Aggregate
- November Geomembrane Wrinkles

Multi-Layer Interface Shear Testing

Robert H. Swan, Jr. Drexel University rhs53@drexel.edu

Timothy D. Stark, Ph.D., P.E.

University of Illinois at Urbana-Champaign tstark@Illinois.edu

Fabricated Geomembrane Institute Webinar Series – 2019 Webinar #3

Robert H. Swan, Jr. Drexel University rhs53@drexel.edu

Timothy D. Stark, Ph.D., P.E.

University of Illinois at Urbana-Champaign tstark@Illinois.edu

Fabricated Geomembrane Institute Webinar Series – 2019 Webinar #3